Seems interesting

Calculus Level 3

1 + 1 3 2 2 + 1 5 2 4 + 1 7 2 6 + = ln A 1+\dfrac{1}{3\cdot 2^2}+\dfrac{1}{5 \cdot 2^4}+\dfrac{1}{7\cdot 2^6}+\cdots =\ln A

Find the positive integer A A .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

We know that for 0 x < 1 0 \le x < 1 , { ln ( 1 + x ) = x 1 2 x 2 + 1 3 x 3 1 4 x 4 + . . . ln ( 1 x ) = x 1 2 x 2 1 3 x 3 1 4 x 4 . . . \begin{cases} \ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + ... \\ \ln(1-x) = - x - \frac{1}{2}x^2 - \frac{1}{3}x^3 - \frac{1}{4}x^4 - ... \end{cases}

ln ( 1 + x ) ln ( 1 x ) = 2 ( x + 1 3 x 3 + 1 5 x 3 1 7 x 7 + . . . ) \begin{aligned} \Rightarrow \ln(1+x) - \ln(1-x) & = 2 \left( x + \frac{1}{3}x^3 + \frac{1}{5}x^3 - \frac{1}{7}x^7 + ... \right) \end{aligned}

Putting x = 1 2 x=\frac{1}{2} , then we have:

ln ( 1 + 1 2 ) ln ( 1 1 2 ) = 2 ( 1 2 + 1 3 ˙ 2 3 + 1 5 ˙ 2 5 1 7 ˙ 2 7 + . . . ) ln ( 1 + 1 2 1 1 2 ) = 1 + 1 3 ˙ 2 2 + 1 5 ˙ 2 4 1 7 ˙ 2 6 + . . . \begin{aligned} \Rightarrow \ln \left(1+\frac{1}{2} \right) - \ln \left(1- \frac{1}{2} \right) & = 2 \left( \frac{1}{2} + \frac{1}{3 \dot{} 2^3} + \frac{1}{5\dot{} 2^5} - \frac{1}{7\dot{} 2^7} + ... \right) \\ \ln \left( \frac{1+\frac{1}{2}}{1-\frac{1}{2}} \right) & = 1 + \frac{1}{3 \dot{} 2^2} + \frac{1}{5\dot{} 2^4} - \frac{1}{7\dot{} 2^6} + ... \end{aligned}

A = 1 + 1 2 1 1 2 = 3 \Rightarrow A = \dfrac{1+\frac{1}{2}}{1-\frac{1}{2}} = \boxed{3}

nice! i ended up doing the reverse, i started with the series and then proved it to be equal to ln(1+x)-ln(1-x)! you can check out my solution too.

Ayush Agarwal - 4 years, 10 months ago
Aareyan Manzoor
Jan 8, 2016

look at the summation n = 1 x 2 n 2 = 1 1 x 2 \sum_{n=1}^\infty x^{2n-2} =\dfrac{1}{1-x^2} integrating both side we have n = 1 x 2 n 1 2 n 1 = ln ( 1 + x 1 x ) 2 \sum_{n=1}^\infty \dfrac{x^{2n-1}}{2n-1}=\dfrac{\ln\left(\left|\dfrac{1+x}{1-x}\right|\right)}{2} divide both sides with x and put x = 1 2 x=\dfrac{1}{2} . n = 1 1 ( 2 n 1 ) 2 2 n 2 = ln ( 1 + 1 2 1 1 2 ) 2 1 2 = ln ( 3 ) \sum_{n=1}^\infty \dfrac{1}{(2n-1)2^{2n-2}}=\dfrac{\ln\left(\left|\dfrac{1+\dfrac{1}{2}}{1-\dfrac{1}{2}}\right|\right)}{2*\dfrac{1}{2}}=\ln(\boxed{3})

Ayush Agarwal
Aug 5, 2016

H e y H e r e s m y t a k e Hey\ Here's\ my\ take

L e t P = 1 / 2 + 1 / 2 3 3 + 1 / 2 5 5 + . . . Let\ P = 1/2 + 1/{2^3}\cdot 3 + 1/{2^5}\cdot 5 +. . .

i f w e n o t i c e c a r e f u l l y w e c a n s e e t h a t i t s e q u i v a l e n t t o t h e f o l l o w i n g i n t e g r a l if\ we\ notice\ carefully\ we\ can\ see\ that\ it's\ equivalent\ to\ the\ following\ integral

I = 0 1 2 1 + x 2 + x 4 + . . . I=\int\limits_0^\frac{1}{2}\ 1+x^2+x^4+. . .

a p p l y i n g t h e i n f i n i t e g e o m e t r i c s u m f o r m u l a ; x ( 0 , 1 ) applying\ the\ infinite\ geometric\ sum\ formula\ ;\ x\subset\ (0,1)

I = 0 1 2 1 1 x 2 = l n 3 I=\int\limits_0^\frac{1}{2}\frac{1}{1-x^2} =ln\sqrt{3}

t h e i n t e g r a l b e i n g a n e a s y o n e i s l e f t a s a n e x e r c i s e f o r t h e r e a d e r the\ integral\ being\ an\ easy\ one\ is\ left\ as\ an\ exercise\ for\ the\ reader

a l l w e n e e d i s t h e v a l u e o f 2 I w h i c h i s l n 3 all\ we\ need\ is\ the\ value\ of\ 2I\ which\ is \ \boxed{ln3}

Rupayan Jana
Jul 25, 2019

It is very much intuitive as the series starts with 1+.... So it must be greater than 1;also notice the terms of the series decreases as we go on.Since 1+1/(3.2^2)=1.08333 ,the series should not increase so much after that(at least near to ln4=1.386..)so the only lnA remains greater than 1 is ln3.so it's ln3 & A=3.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...