Seems Like a Popular Problem!

Algebra Level 5

( 1 1 2 2 ) ( 1 1 3 2 ) ( 1 1 4 2 ) ( 1 1 201 7 2 ) \left(1- \frac{1}{2^2}\right)\left(1- \frac{1}{3^2}\right)\left(1- \frac{1}{4^2}\right) \cdots \left(1- \frac{1}{2017^2}\right)

The expression above can expressed in a form of 1 n + 1 m \frac{1}{n} + \frac{1}{m} where n < m n \lt m are positive integers.

Find the value of 2017 n + 2 m 2017n + 2m .


Try another problem on my set! Let's Practice


The answer is 12102.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Telescoping Series - Product

First, let x = 2017 x = 2017

We know that 1 1 2 2 = ( 1 + 1 2 ) ( 1 1 2 ) 1 - \frac{1}{2^2} = (1 + \frac{1}{2} )( 1 - \frac{1}{2}) .

Do the same thing for the other terms, we have

( 1 1 2 ) ( 1 + 1 2 ) ( 1 1 3 ) ( 1 + 1 3 ) ( 1 + 1 x ) \left(1 - \frac{1}{2} \right)\left(1 + \frac{1}{2} \right)\left(1- \frac{1}{3} \right)\left( 1+ \frac{1}{3}\right)\cdots \left(1 + \frac{1}{x}\right)

Simplify, we have

( 1 2 ) ( 3 2 ) ( 2 3 ) ( 4 3 ) ( 3 4 ) ( x + 1 x ) = ( 1 2 ) ( 1 + 1 x ) = 1 2 + 1 2 x \left( \frac{1}{2}\right)\left( \frac{3}{2}\right)\left( \frac{2}{3}\right)\left( \frac{4}{3}\right)\left( \frac{3}{4}\right)\cdots \left( \frac{x+1}{x} \right) = \left(\frac{1}{2}\right)\left(1 + \frac{1}{x}\right) = \frac{1}{2} + \frac{1}{2x}

Put x = 2017 x=2017 , we have

1 2 + 1 4034 = 1 n + 1 m \frac{1}{2} + \frac{1}{4034} = \frac{1}{n} + \frac{1}{m}

n = 2 n =2 and m = 4034 m = 4034

Hence, 2017 n + 2 m = 4034 + 8068 = 12102 2017n + 2m = 4034 + 8068 = \boxed{12102} .

Relevant wiki: Telescoping Series - Product

P = ( 1 1 2 2 ) ( 1 1 3 2 ) ( 1 1 4 2 ) . . . ( 1 1 201 7 2 ) = n = 2 2017 ( 1 1 n 2 ) = n = 2 2017 n 2 1 n 2 = n = 2 2017 ( n 1 ) ( n + 1 ) n 2 = 2016 ! 2018 ! ( 2017 ! ) 2 2 = 2018 2017 2 = 1009 2017 = 1 2 + 1 4034 \begin{aligned} P & = \left(1-\frac 1{2^2}\right) \left(1-\frac 1{3^2}\right) \left(1-\frac 1{4^2}\right) ... \left(1-\frac 1{2017^2}\right) \\ & = \prod_{n=2}^{2017} \left(1-\frac 1{n^2}\right) \\ & = \prod_{n=2}^{2017} \frac {n^2-1}{n^2} \\ & = \prod_{n=2}^{2017} \frac {(n-1){\color{#3D99F6}(n+1)}}{n^2} \\ & = \frac {2016! \cdot {\color{#3D99F6}2018!}}{(2017!)^2\cdot {\color{#3D99F6}2}} = \frac {2018}{2017\cdot 2} = \frac {1009}{2017} = \frac 12+\frac 1{4034} \end{aligned}

2017 n + 2 m = 2017 2 + 2 4034 = 12102 \implies 2017n+2m = 2017 \cdot 2 + 2 \cdot 4034 = \boxed{12102}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...