Seems like Cauchy

Algebra Level 4

The maximum value of f ( x , y , z ) = 5 x + 4 y + 4 z f(x,y,z) = 5x+4y+4z on the ellipsoid 10 x 2 + 20 y 2 + 15 z 2 = 1 10x^2 + 20y^2 + 15z^2 = 1 can be expressed in the form m n \sqrt{ \dfrac{m}{n}} , where m m and n n are coprime positive integers. Find m + n m+n .


The answer is 161.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Similar solution as Prakhar Gupta 's

Using Cauchy-Schwarz inequality , we have:

( 5 10 ( 10 x ) + 4 20 ( 20 y ) + 4 15 ( 15 z ) ) 2 ( ( 5 10 ) 2 + ( 4 20 ) 2 + ( 4 15 ) 2 ) ( ( 10 x ) 2 + ( 20 y ) 2 + ( 15 z ) 2 ) ( 5 x + 4 y + 4 z ) 2 ( 25 10 + 16 20 + 16 15 ) ( 10 x 2 + 20 y 2 + 15 z 2 ) ( 5 2 + 4 5 + 16 15 ) ( 1 ) 131 30 5 x + 4 y + 4 z 131 30 \begin{aligned} \left({\color{#3D99F6}\frac 5{\sqrt{10}}}{\color{#D61F06}(\sqrt{10}x)} + {\color{#3D99F6}\frac 4{\sqrt{20}}}{\color{#D61F06}(\sqrt{20}y)} + {\color{#3D99F6}\frac 4{\sqrt{15}}}{\color{#D61F06}(\sqrt{15}z)} \right)^2 & \le \left(\left({\color{#3D99F6} \frac 5{\sqrt{10}}}\right)^2 + \left({\color{#3D99F6}\frac 4{\sqrt{20}}}\right)^2 + \left({\color{#3D99F6}\frac 4{\sqrt{15}}}\right)^2 \right) \left({\color{#D61F06}(\sqrt{10}x)}^2 + {\color{#D61F06}(\sqrt{20}y)}^2 + {\color{#D61F06}(\sqrt{15}z)}^2 \right) \\ (5x+4y+4z)^2 & \le \left(\frac {25}{10}+\frac {16}{20} + \frac {16}{15} \right) \left(10x^2+20y^2 + 15z^2 \right) \\ & \le \left(\frac 52+\frac 45 + \frac {16}{15} \right) \left(1 \right) \\ & \le \frac {131}{30} \\ \implies 5x+4y+4z & \le \sqrt{\frac {131}{30}} \end{aligned}

m + n = 131 + 30 = 161 \implies m + n = 131+30 = \boxed{161}

Prakhar Gupta
Apr 29, 2015

As the problem name suggests, we can find the required answer very easily using Cauchy-Schwarz inequality. ( 10 x 2 + 20 y 2 + 15 z 2 ) ( 25 10 + 16 20 + 16 15 ) ( 5 x + 4 y + 4 z ) 2 . (10x^{2} + 20y^{2} + 15z^{2})(\dfrac{25}{10}+ \dfrac{16}{20} + \dfrac{16}{15}) \geq (5x+4y+4z)^{2}. ( 1 ) ( 5 2 + 4 5 + 16 15 ) ( 5 x + 4 y + 4 z ) 2 (1)(\dfrac{5}{2}+\dfrac{4}{5}+\dfrac{16}{15}) \geq (5x+4y+4z)^{2} ( 5 x + 4 y + 4 z ) 131 30 (5x+4y+4z) \leq \sqrt{\dfrac{131}{30}} Hence the required answer is 131 + 30 = 161 131+30 = 161 .

By the way @Sean Ty Why is the problem under Number Theory section rather than Algebra??

@Calvin Lin Please change the topic..!

Ankit Kumar Jain - 4 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...