Seems Like They are Mistaken Twins!

Algebra Level 3

If n n is a random positive real integer, is it true that n + n 2 + 1 = 2 n + 1 n + n 2 + 1 n + \sqrt{n^2+1} = 2n + \frac{1}{n+\sqrt{n^2+1}} ?


Try another problem on my set! Let's Practice
False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

First, let's rationalise 1 n + n ² + 1 \frac{1}{n+\sqrt{n²+1}} .

1 n + n ² + 1 n n ² + 1 n n ² + 1 \frac{1}{n + \sqrt{n²+1}} \cdot \frac{n - \sqrt{n²+1}}{n - \sqrt{n²+1}}

= n n ² + 1 n ² ( n ² + 1 ) = n + n ² + 1 1 = \frac{n - \sqrt{n²+1}}{n² - ( n² + 1)} = \frac{-n +\sqrt{n²+1}}{1} .

Then, we can simplify the equation

n + n ² + 1 = 2 n + ( n + n ² + 1 ) n + \sqrt{n²+1} = 2n + (-n + \sqrt{n²+1} ) .

n + n ² + 1 = n + n ² + 1 n + \sqrt{n²+1} = n + \sqrt{n²+1} .

Hence, it is True \boxed{\text{True}}

Edwin Gray
Sep 22, 2018

Let x = n + sqrt(n^2 + 1). x>0. Is x = 2n + 1/x, or is x^2 - 2nx - 1 =0, 2x = 2n +/- sqrt(4n^2 + 4), x = n + sqrt(n^2 + 1), so true. Ed Gray

Zee Ell
Jan 13, 2017

n + n 2 + 1 = 2 n + 1 n + n 2 + 1 n + \sqrt { n^2 + 1 } = 2n + \frac {1}{n + \sqrt { n^2 + 1 }}

n 2 + 1 n = 1 n 2 + 1 + n \sqrt { n^2 + 1 } - n = \frac {1}{ \sqrt { n^2 + 1 } + n}

( n 2 + 1 n ) ( n 2 + 1 + n ) = 1 ( \sqrt { n^2 + 1 } - n)( \sqrt { n^2 + 1 } + n ) = 1

n 2 + 1 n 2 = 1 n^2 + 1 - n^2 = 1

1 1 1 \equiv 1

This means, that our equation is an identity (always true), whenever we can evaluate both sides.

We will show now, that for all real n (not just for positive real numbers) this identity stands. For this, it is enough to show that all real numbers are part of the domain of the RHS.

No negative number under the square root:

Since n R : n 2 + 1 1 0 n 2 + 1 R \text {Since } \forall n \in \mathbb {R} : n^2 + 1 ≥ 1 ≥ 0 \Longrightarrow \sqrt { n^2 + 1 } \in \mathbb {R}

No division by zero:

And since n R : n 2 + 1 > n 2 = n n 2 + 1 + n > 0 \text {And since } \forall n \in \mathbb {R} : \sqrt { n^2 + 1} > \sqrt { n^2 } = | n | \Longrightarrow \sqrt { n^2 + 1 } + n > 0

1 n + n 2 + 1 R \Longrightarrow \frac {1}{ n+ \sqrt { n^2 + 1} } \in \mathbb {R}

Hence, our statement is True for all real values of n. \text {Hence, our statement is } \boxed { \text {True} } \text { for all real values of n. }

Nice approach!

Fidel Simanjuntak - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...