Fourth power of sine!

Calculus Level 3

0 2 π sin 4 x d x = a π b c \displaystyle \int_{0}^{2\pi} \sin^4 x \; \mathrm{d}x = \dfrac {a\pi^b}{c}

where a , c a, c are coprime positive integers. What is a + b + c a+b+c ?


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

A Simpler Approach

We note that the integral is even, positive and symmetrical at π 2 \frac \pi 2 and 3 π 2 \frac {3 \pi}2 , then we have:

I = 0 2 π sin 4 x d x = 4 0 π 2 sin 4 x d x Using the identity a b f ( x ) d x = a b f ( a + b x ) d x = 2 0 π 2 sin 4 x + cos 4 x d x = 2 0 π 2 ( sin 2 x + cos 2 x ) 2 2 sin 2 x cos 2 x d x = 2 0 π 2 1 1 2 sin 2 2 x d x = π 1 2 0 π 2 ( 1 cos 4 x ) d x = π π 4 + 1 8 sin 4 x 0 π 2 = π π 4 + 0 = 3 π 4 \begin{aligned} I & = \int_0^{2\pi} \sin^4 x \ dx \\ & = 4 \int_0^\frac \pi 2 \sin^4 x \ dx & \small \color{#3D99F6}{\text{Using the identity }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx} \\ & = 2 \int_0^\frac \pi 2 \sin^4 x + \cos^4 x \ dx \\ & = 2 \int_0^\frac \pi 2 (\sin^2 x + \cos^2 x)^2 - 2 \sin^2 x \cos^2 x \ dx \\ & = 2 \int_0^\frac \pi 2 1 - \frac 12 \sin^2 2x \ dx \\ & = \pi - \frac 12 \int_0^\frac \pi 2 (1-\cos 4x) \ dx \\ & = \pi - \frac \pi 4 + \frac 18 \sin 4x \ \bigg|_0^\frac \pi 2 \\ & = \pi - \frac \pi 4 + 0 = \frac {3\pi}4 \end{aligned}

a + b + c = 3 + 1 + 4 = 8 \implies a+b+c = 3+1+4 = \boxed{8}


Previous Solution

We note that the integral is even, positive and symmetrical at π 2 \frac \pi 2 and 3 π 2 \frac {3 \pi}2 , then we have:

I = 0 2 π sin 4 x d x = 4 0 π 2 sin 4 x d x = 2 × 2 0 π 2 cos 0 x sin 4 x d x = 2 B ( 1 2 , 5 2 ) B ( ) is beta function. = 2 Γ ( 1 2 ) Γ ( 5 2 ) Γ ( 3 ) Γ ( ) is gamma function. = 2 π 3 2 1 2 π 2 ! = 3 π 4 \begin{aligned} I & = \int_0^{2\pi} \sin^4 x \ dx \\ & = 4 \int_0^\frac \pi 2 \sin^4 x \ dx \\ & = 2 \times 2 \int_0^\frac \pi 2 \cos^0 x \sin^4 x \ dx \\ & = 2 B \left(\frac 12, \frac 52 \right) & \small \color{#3D99F6}{B(\cdot) \text{ is beta function.}} \\ & = \frac {2 \Gamma \left(\frac 12 \right)\Gamma \left(\frac 52 \right)}{\Gamma \left(3 \right)} & \small \color{#3D99F6}{\Gamma(\cdot) \text{ is gamma function.}} \\ & = \frac {2 \sqrt \pi \cdot \frac 32 \cdot \frac 12 \sqrt \pi}{2!} \\ & = \frac {3 \pi}4 \end{aligned}

a + b + c = 3 + 1 + 4 = 8 \implies a+b+c = 3+1+4 = \boxed{8}


References:

Nice solution. We can also solve directly from the 3rd step by using Walli's formula.

Swagat Panda - 4 years, 8 months ago

Typo , should be "gamma function".

Harsh Shrivastava - 4 years, 7 months ago

Log in to reply

Thanks. I have done the changes.

Chew-Seong Cheong - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...