Seems too easy! -2

Calculus Level 5

The value of 0 π 4 e sec x sin ( x + π 4 ) ( 1 sin x ) cos x d x \int_{0}^{\frac{\pi}{4}} e^{\sec x} \dfrac{\sin\Big( x + \dfrac{\pi}{4}\Big)}{(1 - \sin x) \cos x} dx

can be expressed as ( a + b ) e c e d . \dfrac{(a + \sqrt{b})e^{\sqrt{c}} - e}{\sqrt{d}}.

Find a + b + c + d . \displaystyle{a+b+c+d}.


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aakarshit Uppal
Jan 23, 2015

First of all, note that

d d x ( e g ( x ) f ( x ) ) = e g ( x ) { g ( x ) f ( x ) + f ( x ) } \frac{d}{dx}(e^{g(x)}f(x)) = e^{g(x)} \{g'(x)f(x) + f'(x)\}

Consequently,

e g ( x ) { g ( x ) f ( x ) + f ( x ) } d x = e g ( x ) f ( x ) \int e^{g(x)} \{g'(x)f(x) + f'(x)\} dx = e^{g(x)}f(x)

Our aim is to reduce the given integral to the above form.

We already have g ( x ) = sec ( x ) g(x) = \sec(x)

Let I = 0 π 4 e sec x sin ( x + π 4 ) ( 1 sin x ) ( cos x ) d x I = \int_{0}^{\frac{\pi}{4}} e^{\sec x} {\frac{\sin (x+\frac{\pi}{4})}{(1-\sin x)(\cos x)}} dx

Expanding sin ( x + π 4 ) \sin (x+\frac{\pi}{4}) ,

I = 1 2 0 π 4 e sec x sin x + cos x ( 1 sin x ) ( cos x ) d x I = \frac{1}{\sqrt2}\int_{0}^{\frac{\pi}{4}} e^{\sec x} {\frac{\sin x+\cos x}{(1-\sin x)(\cos x)}} dx

Dividing Numerator and denominator by cos 2 x \cos^2 x we have

I = 1 2 0 π 4 e sec x tan x sec x + sec x ( sec x tan x ) d x I = \frac{1}{\sqrt2}\int_{0}^{\frac{\pi}{4}} e^{\sec x} {\frac{\tan x\sec x+\sec x}{(\sec x-\tan x)}}dx

I = 1 2 0 π 4 e sec x { tan x sec x ( sec x tan x ) + sec x ( sec x tan x ) } d x \Rightarrow I = \frac{1}{\sqrt2}\int_{0}^{\frac{\pi}{4}} e^{\sec x} \Big \{{\frac{\tan x\sec x}{(\sec x-\tan x)}} + \frac{\sec x}{(\sec x-\tan x)}\Big\}dx

I = 1 2 0 π 4 e sec x { tan x sec x ( 1 ( sec x tan x ) ) + sec x ( sec x tan x ) ( sec x tan x ) 2 } d x \Rightarrow I = \frac{1}{\sqrt2}\int_{0}^{\frac{\pi}{4}} e^{\sec x} \Big \{\tan x\sec x\Big({\frac{1}{(\sec x-\tan x)}\Big)} + \frac{\sec x(\sec x-\tan x)}{(\sec x-\tan x)^2}\Big\}dx

Comparing with the form above, f ( x ) = 1 ( sec x tan x ) f(x) = \frac{1}{(\sec x-\tan x)}

Thus, I = 1 2 e sec x ( sec x tan x ) 0 π 4 I = \frac{1}{\sqrt2}\frac{e^{\sec x}}{(\sec x-\tan x)}\Big|_0^\frac{\pi}{4}

Putting the limits, we have

I = 1 2 ( e 2 2 1 e ) I = \frac{1}{\sqrt2}\Big( \frac{e^{\sqrt2}}{\sqrt2 - 1} - e\Big)

I = ( 1 + 2 ) e 2 e 2 \Rightarrow I = \frac{(1+\sqrt2)e^{\sqrt2} - e}{\sqrt2}

which gives

a = 1 , b = 2 , c = 2 , d = 2 a=1 , b=2 , c=2 , d=2

a + b + c + d = 1 + 2 + 2 + 2 = 7 \Rightarrow a+b+c+d = 1+2+2+2 = \boxed{\color{#D61F06}7}

n i c e l y nicely e x p l a i n e d explained

harsh soni - 6 years, 2 months ago
Ashwin Gopal
Dec 23, 2014

In the given expression put t=sec(x) and then proceed.. Draw a right angled triangle with angle x and then put secx =t With this find all other trigonometric functions. Substitute these values in the given expression an spit into two terms . We will get second term as derivative of first term. Use the property and apply the limit. We will get a=1,b=2,c=2,d=2.

So,a+b+c+d=7.

DIDN'T PUT INTEGRAL SYMBOL PLEASE COPE WITH IT.

SORRY FOR PHOTO SOLUTION . I AM VERY SLOW WITH LATEX

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...