Seesaw

In the playground there is a seesaw of length 2 l = 3 m 2 l = 3 \, \text {m} held in the middle by two springs at a distance of 2 a = 1 m 2 a = 1 \, \text {m} from each other. The springs each have a spring constant of k = 1 kN / m k = 1 \, \text {kN} / \text {m} . Without load, the seesaw has a height of h 0 = 50 cm h_0 = 50 \, \text {cm} .

Now a stone of mass m = 1 kg m = 1 \, \text {kg} is placed on one end of the seesaw.

What is the vertical deflection δ \delta of the seesaw at the place where the stone lies?

Assume that the seesaw and the springs are massless.

δ 1 cm \delta \approx 1\,\text{cm} δ 2 cm \delta \approx 2\,\text{cm} δ 3 cm \delta \approx 3\,\text{cm} δ 5 cm \delta \approx 5\,\text{cm} δ 8 cm \delta \approx 8\,\text{cm}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Markus Michelmann
Jun 16, 2018

To the deflection of the mass and the lengths of springs arise geometrically based on the following diagram:

The position and orientation of the seesaw can be described by the height h h of its center and the angle of inclination α \alpha . The vertical deflection then gives δ = ( h 0 h ) + l sin α ( h 0 h ) + l α + O ( α 3 ) \delta = (h_0 - h) + l \sin \alpha \approx (h_0 - h) + l \alpha + \mathcal{O}(\alpha^3) The lengths s 1 s_1 and s 2 s_2 of the springs results acccordingly s 1 , 2 = a 2 ( 1 cos α ) 2 + ( h ± a sin α ) 2 = h 2 + 2 a 2 ( 1 cos α ) ± 2 a h sin α \begin{aligned} s_{1,2} &= \sqrt{a^2 (1 - \cos \alpha)^2 + (h \pm a \sin \alpha)^2 } \\ &= \sqrt{h^2 + 2 a^2 (1 - \cos \alpha) \pm 2 a h \sin \alpha} \end{aligned} Now we make an Taylor expansion of length s 1 s_1 and s 2 s_2 as a function of the variables h h and α \alpha . Therefore, we need the partial derivatives up the the second order s i h = h ± a sin α s i s i α = a 2 sin α ± a h cos α s i 2 s i h 2 = 1 s i ( h + a sin α ) 2 s i 3 2 s i α 2 = a 2 cos α a h sin α s i ( a 2 sin α ± a h cos α ) 2 s i 3 2 s i α h = 2 s i h α = ± a cos α s i ( h ± a sin α ) ( a 2 sin α ± a h cos α ) s i 3 \begin{aligned} \frac{\partial s_i}{\partial h} &= \frac{h \pm a \sin \alpha}{s_i} \\ \frac{\partial s_i}{\partial \alpha} &= \frac{a^2 \sin \alpha \pm a h \cos \alpha}{s_i} \\ \frac{\partial^2 s_i}{\partial h^2} &= \frac{1}{s_i} - \frac{(h + a \sin \alpha)^2}{s_i^3} \\ \frac{\partial^2 s_i}{\partial \alpha^2} &= \frac{a^2 \cos \alpha \mp a h \sin \alpha}{s_i} - \frac{(a^2 \sin \alpha \pm a h \cos \alpha)^2}{s_i^3} \\ \frac{\partial^2 s_i}{\partial \alpha \partial h} = \frac{\partial^2 s_i}{\partial h \partial \alpha} &= \pm \frac{a \cos \alpha}{s_i} - \frac{(h \pm a \sin \alpha)(a^2 \sin \alpha \pm a h \cos \alpha)}{s_i^3} \end{aligned} The second order Taylor expansion results to s i s i h 0 , 0 + s i h h 0 , 0 ( h h 0 ) + s i α h 0 , 0 α + 1 2 2 s i h 2 h 0 , 0 ( h h 0 ) 2 + 1 2 2 s i α 2 h 0 , 0 α 2 + 2 s i h α h 0 , 0 ( h 0 h ) α = h ± a α \begin{aligned} s_i &\approx \left. s_i \right|_{h_0,0} + \left. \frac{\partial s_i}{\partial h} \right|_{h_0,0} (h - h_0) + \left. \frac{\partial s_i}{\partial \alpha} \right|_{h_0,0} \alpha \\ & \quad + \left. \frac{1}{2}\frac{\partial^2 s_i}{\partial h^2} \right|_{h_0,0} (h - h_0)^2 + \left. \frac{1}{2}\frac{\partial^2 s_i}{\partial \alpha^2} \right|_{h_0,0} \alpha^2 + \left. \frac{\partial^2 s_i}{\partial h \partial \alpha} \right|_{h_0,0} (h_0 - h) \alpha \\ &= h \pm a \alpha \end{aligned} The total energy of the system is the sum of the elastic energies of the springs and the potential energy of the mass: E ( h , α ) = k 2 ( s 1 h 0 ) 2 + k 2 ( s 2 h 0 ) 2 m g δ k 2 ( h h 0 + a α ) 2 + k 2 ( h h 0 a α ) 2 m g ( h 0 h + l α ) k ( h h 0 ) 2 + k a 2 α 2 m g ( h 0 h + l α ) \begin{aligned} E(h, \alpha) &= \frac{k}{2} (s_1 - h_0)^2 + \frac{k}{2} (s_2 - h_0)^2 - m g \delta \\ &\approx \frac{k}{2} (h - h_0 + a \alpha)^2 + \frac{k}{2} (h - h_0 - a \alpha)^2 - m g \left(h_0 - h + l \alpha \right) \\ &\approx k (h - h_0)^2 + k a^2 \alpha^2 - m g \left(h_0 - h + l \alpha \right) \end{aligned} In equilibrium, the energy als function of h h and α \alpha is minimal. Therefore, both partial derivatives must be zero 0 = ! E h = 2 k ( h h 0 ) + m g h h 0 m g 2 k 0 = ! E α = 2 k a 2 α m g l α m g l 2 k a 2 \begin{aligned} 0 \stackrel{!}{=} \frac{\partial E}{\partial h} &= 2 k (h - h_0) + m g \\ \Rightarrow \qquad h &\approx h_0 - \frac{m g}{2 k} \\ 0 \stackrel{!}{=} \frac{\partial E}{\partial \alpha} &= 2 k a^2 \alpha - m g l \\ \Rightarrow \qquad \alpha &\approx \frac{m g l}{2 k a^2} \end{aligned} Thus, we get the final result δ h 0 h + l α m g 2 k ( 1 + l 2 a 2 ) 1 10 2 1000 ( 1 + 9 ) m = 5 cm \begin{aligned} \delta &\approx h_0 - h + l \alpha \\ &\approx \frac{m g}{2 k} \left(1 + \frac{l^2}{a^2} \right) \\ &\approx \frac{1 \cdot 10}{2 \cdot 1000} \left(1 + 9 \right) \,\text{m} \\ &= 5 \,\text{cm} \end{aligned}

Very nice! My choice of coordinates is very similar as yours, although I thought that we're expected to neglect the bending of the stings (which can indeed be justified in this case considering relatively high spring constant and relatively small mass of the rock). Solution I found, led by this assumption, is δ 4.9 \delta \approx 4.9 . But your solution is definitely an all-encompassing and a most complete solution to the problem.

Uros Stojkovic - 1 year, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...