Segments of a Circle

Geometry Level 3

In the above semicircle, chords A B , B C AB, BC and C D CD have lengths 6 , 6 6,6 and 14 14 respectively.

If the area A A of the shaded regions above can be expressed as A = a c π b c A = \dfrac{a}{c}\pi - b\sqrt{c} , where a , b a,b and c c are coprime positive integers, find a + b + c a + b + c .


The answer is 147.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 14, 2020

Let C O D = α \angle COD = \alpha and C O B = B O A = β \angle COB = \angle BOA = \beta . Then α + 2 β = 18 0 \alpha + 2\beta = 180^\circ . Let the radius of the semicircle be r r . By cosine rule we have 2 r 2 ( 1 cos α ) = 1 4 2 2r^2(1-\cos \alpha) = 14^2 and 2 r 2 ( 1 cos β ) = 6 2 2r^2 (1-\cos \beta) = 6^2 . Therefore,

1 cos α 1 cos β = 1 4 2 6 2 9 9 cos α = 49 49 cos β Putting α = 18 0 2 β 9 cos ( 18 0 2 β ) + 49 cos β 40 = 0 Note that cos ( 18 0 θ ) = cos θ 9 cos ( 2 β ) + 49 cos β 40 = 0 and cos ( 2 θ ) = 2 cos 2 θ 1 18 cos 2 β + 49 cos β 49 = 0 cos β = 7 9 sin β = 4 2 9 cos α = cos 2 β = sin 2 β cos 2 β = 17 81 sin α = 56 2 81 \begin{aligned} \frac {1-\cos \alpha}{1-\cos \beta} & = \frac {14^2}{6^2} \\ 9 - 9 \cos \alpha & = 49 - 49 \cos \beta & \small \blue{\text{Putting }\alpha = 180^\circ - 2\beta} \\ - 9 \cos (180^\circ - 2\beta) + 49 \cos \beta - 40 & = 0 & \small \blue{\text{Note that }\cos (180^\circ -\theta)= - \cos \theta} \\ 9 \cos (2\beta) + 49 \cos \beta - 40 & = 0 & \small \blue{\text{and }\cos (2\theta)= 2\cos^2 \theta-1} \\ 18\cos^2 \beta + 49 \cos \beta - 49 & = 0 \\ \implies \cos \beta & = \frac 79 & \small \blue{\implies \sin \beta = \frac {4\sqrt 2}9} \\ \cos \alpha & = - \cos 2 \beta \\ & = \sin^2 \beta - \cos^2 \beta \\ & = - \frac {17}{81} & \small \blue{\implies \sin \alpha = \frac {56\sqrt 2}{81}} \end{aligned}

From 2 r 2 ( 1 cos β ) = 6 2 r 2 = 81 2r^2(1-\cos \beta) = 6^2 \implies r^2 = 81 . The area of the quadrilateral A A B C D = 1 2 r 2 sin α + r 2 sin β = 64 2 A_{ABCD} = \dfrac 12r^2 \sin \alpha + r^2 \sin \beta = 64\sqrt 2 and the area of the shaded regions A = 1 2 π r 2 A A B C D = 81 2 π 64 2 A = \dfrac 12 \pi r^2 - A_{ABCD} = \dfrac {81}2 \pi - 64\sqrt 2 . Therefore a + b + c = 81 + 2 + 64 = 147 a+b+c = 81+2+64 = \boxed{147} .

Rocco Dalto
Jan 13, 2020

Using the above diagram 2 ( 180 2 θ ) + λ = 180 λ = 4 θ 180 2(180 - 2\theta) + \lambda = 180 \implies \lambda = 4\theta - 180 \implies

m = 180 2 θ m = 180 - 2\theta .

For A O B \triangle{AOB} using the law of cosines we have:

36 = 2 r 2 ( 1 cos ( 180 2 θ ) ) 18 = r 2 ( 1 + cos ( 2 θ ) ) r 2 = 18 1 + cos ( 2 θ ) 36 = 2r^2(1 - \cos(180 - 2\theta)) \implies 18 = r^2(1 + \cos(2\theta)) \implies r^2 = \dfrac{18}{1 + \cos(2\theta)}

and

for C O D \triangle{COD} using the law of cosines we have:

196 2 r 2 ( 1 + cos ( 4 θ ) ) 49 = r 2 ( cos 2 ( 2 θ ) ) 196 - 2r^2(1 + \cos(4\theta)) \implies 49 = r^2(\cos^2(2\theta)) \implies

49 + 49 cos ( 2 θ ) = 18 cos 2 ( 2 θ ) 18 cos 2 ( θ ) 49 cos ( 2 θ ) 49 = 0 49 + 49\cos(2\theta) = 18\cos^2(2\theta) \implies 18\cos^2(\theta) - 49\cos(2\theta) - 49 = 0 \implies

cos ( 2 θ ) = 49 ± 77 2 \cos(2\theta) = \dfrac{49 \pm 77}{2} and cos ( u ) 1 cos ( 2 θ ) = 7 9 |\cos(u)| \leq 1 \implies \cos(2\theta) = -\dfrac{7}{9}

r 2 = 18 1 7 9 = 81 r = 9. \implies r^2 = \dfrac{18}{1 - \dfrac{7}{9}} = 81 \implies r = 9.

Let h 1 h_{1} be the height of A O B h 1 = 81 9 = 72 = 6 2 \triangle{AOB} \implies h_{1} = \sqrt{81 - 9} = \sqrt{72} = 6\sqrt{2} \implies

A 1 = 2 A A O B = 36 2 A_{1} = 2*A_{\triangle{AOB}} = 36\sqrt{2}

Let h 2 h_{2} be the height of C O D h 2 = 81 49 = 32 = 4 2 \triangle{COD} \implies h_{2} = \sqrt{81 -49} = \sqrt{32} = 4\sqrt{2} \implies

A 2 = A C O D = 28 2 A_{2} = A_{\triangle{COD}} = 28\sqrt{2}

\implies Area of quadrilateral A B C D ABCD is A A B C D = A 1 + A 2 = 64 2 A_{ABCD} = A_{1} + A_{2} = 64\sqrt{2} \implies

The desired area is A = 81 2 π 64 2 = a c π b c a + b + c = 147 A = \dfrac{81}{2}\pi - 64\sqrt{2} = \dfrac{a}{c}\pi - b\sqrt{c} \implies a + b + c = \boxed{147} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...