Segments Within Rectangles

Geometry Level 3

In rectangle A B C D ABCD above, whose length is twice its width, two line segments are drawn from point E E to the bottom two vertices C C and D D . If D E \overline{DE} bisects A E C \angle{AEC} , what is the measure, in degrees, of A E D \angle{AED} ?


The answer is 75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

David Vreken
Jul 6, 2018

As alternate interior angles to parallel lines A B AB and D C DC , A E D C D E \angle AED \cong \angle CDE , and so C E D A E D C D E \angle CED \cong \angle AED \cong \angle CDE which means C E D \triangle CED is an isosceles triangle with C D C E CD \cong CE .

Since we are given that C D = 2 B C CD = 2 \cdot BC , and since C D C E CD \cong CE , we have C E = 2 B C CE = 2 \cdot BC . Using right triangle B E C \triangle BEC , sin B E C = B C C E \sin \angle BEC = \frac{BC}{CE} or sin B E C = 1 2 \sin \angle BEC = \frac{1}{2} , which means B E C = 30 ° \angle BEC = 30° .

Finally, as a straight angle, A E B = 180 ° \angle AEB = 180° , and since A E B = A E D + C E D + B E C \angle AEB = \angle AED + \angle CED + \angle BEC and A E D C E D \angle AED \cong \angle CED , we have 180 ° = A E D + A E D + 30 ° 180° = \angle AED + \angle AED + 30° , which means A E D = 75 ° \angle AED = \boxed{75°} .

Let A D = B C = 1 \overline{AD}=\overline{BC}=1 , then A B = C D = 2 \overline{AB} = \overline{CD}=2 , and A E D = D E C = θ \angle AED = \angle DEC = \theta . Since A B \overline{AB} is parallel to C D \overline{CD} , E D C = A E D = θ \angle EDC = \angle AED = \theta and C D E \triangle CDE is an isosceles triangle. Therefore, C E = C D = 2 \overline{CE} = \overline{CD} = 2 .

We note that E D = A D sin A E D = 1 sin θ \overline{ED} = \dfrac {\overline{AD}}{\sin \angle AED} = \dfrac 1{\sin \theta} . Also E D = 2 C E cos D E C = 2 × 2 cos θ \overline{ED} = 2\overline{CE} \cos \angle DEC = 2\times 2\cos \theta . Therefore, we have:

4 cos θ = 1 sin θ 2 sin θ cos θ = 1 2 sin ( 2 θ ) = 1 2 2 θ = 15 0 Note that 2 θ > 3 0 θ = 75 \begin{aligned} 4 \cos \theta & = \frac 1{\sin \theta} \\ 2\sin \theta \cos \theta & = \frac 12 \\ \sin (2\theta) & = \frac 12 \\ \implies 2 \theta & = 150^\circ & \small \color{#3D99F6} \text{Note that }2 \theta > 30^\circ \\ \theta & = \boxed{75}^\circ \end{aligned}

Aparna Phadke
Feb 24, 2019

Clue: Compute that triangle EBC is 30 60 90 triangle

Andrea Palma
Jul 18, 2018

Tha angle E D C EDC is congruent to angle A E D AED couse segments A B AB and D C DC are parallel and D E DE in a trasversal. Hence angles D E C DEC and E D C EDC are congruent and the triangle E C D ECD is isosceles. Consider the right triangle C B E CBE (right in B B ). It is half an equilateral triangle couse its hypotenuse E C EC is double the side B C BC . So angle B C E BCE is 6 0 60^{\circ} and angle C E B CEB is 3 0 30^\circ . So angle A E C AEC is 15 0 150^\circ , and angle A E D AED is 7 5 75^\circ .

Edwin Gray
Jul 7, 2018

Let AE = r. Let <AED = t. Computing angles, we find < BCE = 2t - 90. Then in triangle AED, tan(t) = 1/r. In triangle BCE, tan(2t - 90) = 2 -r, where we have assumed the dimensions of the rectangle are 1 and 2. So sin(t)/cos(t) = 1/r, and sin(2t - 90)/cos(2t - 90) = -cos(2t)/sin(2t) = {sin^(t) - cos^(t)/(2sin(t)cos(t) = 2 - r. Substituting cos(t) = r*sin(t), and simplifying, r^2 - 4r + 1 =0, With root r = 2 - sqrt(3), then tan(t) = 1/r gives t = 75. Ed Gray]

Suppose A D = a , D C = 2 a |AD| = a, |DC| = 2a , and A E D = D E C = θ \angle AED = \angle DEC = \theta . Then B E C = π 2 θ \angle BEC = \pi - 2\theta . So with A E = x |AE| = x we have

cot ( A E D ) = cot ( θ ) = x a \cot(\angle AED) = \cot(\theta) = \dfrac{x}{a} and cot ( B E C ) = cot ( π 2 θ ) = 2 a x a = 2 x a \cot(\angle BEC) = \cot(\pi - 2\theta) = \dfrac{2a - x}{a} = 2 - \dfrac{x}{a} , in which case

cot ( θ ) + cot ( π 2 θ ) = 2 cot ( θ ) cot ( 2 θ ) = 2 cot ( θ ) 1 tan 2 ( θ ) 2 tan ( θ ) = 2 \cot(\theta) + \cot(\pi - 2\theta) = 2 \Longrightarrow \cot(\theta) - \cot(2\theta) = 2 \Longrightarrow \cot(\theta) - \dfrac{1 - \tan^{2}(\theta)}{2\tan(\theta)} = 2

2 ( 1 tan 2 ( θ ) ) = 4 tan ( θ ) tan 2 ( θ ) 4 tan ( θ ) + 1 = 0 tan ( θ ) = 4 ± 12 2 = 2 ± 3 \Longrightarrow 2 - (1 - \tan^{2}(\theta)) = 4\tan(\theta) \Longrightarrow \tan^{2}(\theta) - 4\tan(\theta) + 1 = 0 \Longrightarrow \tan(\theta) = \dfrac{4 \pm \sqrt{12}}{2} = 2 \pm \sqrt{3} .

Now clearly θ > π / 4 tan ( θ ) > 1 \theta \gt \pi /4 \Longrightarrow \tan(\theta) \gt 1 , so we take the positive root, i.e., tan ( θ ) = 2 + 3 \tan(\theta) = 2 + \sqrt{3} , from which we recognize that θ = 7 5 \theta = \boxed{75^{\circ}} .

Note: tan ( 7 5 ) = tan ( 4 5 + 3 0 ) = tan ( 4 5 ) + tan ( 3 0 ) 1 tan ( 4 5 ) tan ( 3 0 ) = 1 + 1 3 1 1 3 = 3 + 1 3 1 = ( 3 + 1 ) 2 2 = 4 + 2 3 2 = 2 + 3 \tan(75^{\circ}) = \tan(45^{\circ} + 30^{\circ}) = \dfrac{\tan(45^{\circ}) + \tan(30^{\circ})}{1 - \tan(45^{\circ}) \tan(30^{\circ})} = \dfrac{1 + \dfrac{1}{\sqrt{3}}}{1 - \dfrac{1}{\sqrt{3}}} = \dfrac{\sqrt{3} + 1}{\sqrt{3} - 1} = \dfrac{(\sqrt{3} + 1)^{2}}{2} = \dfrac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...