Self Inductance of Square Wire Loop

Consider a square wire loop with a side length S = 2 S = 2 and a wire radius R = 0.005 R = 0.005 . Calculate the self inductance of the wire loop by making the following assumptions:

1) One unit of current flows around the perimeter of a square of side length 2 2 , centered on the origin of the x y xy plane. There is no cross-sectional area associated with the current loop. This loop corresponds to the central axis of the wire.

2) Calculate the resulting magnetic flux through the interior surface area bounded by a square of side length 1.99 1.99 , centered on the origin of the x y xy plane. The sides of this square are parallel to those of the square from Step 1 1 , and both squares are at z = 0 z = 0 .

Because the magnetic source (current loop) is separated from the target surface, this simplified problem is mathematically well-behaved. Let the approximate self inductance derived from the above calculations be L a L_a .

I found a formula online for approximating the self inductance of a square wire loop. Let this value be L f L_f .

L f = 2 μ 0 S π [ n ( S R ) 0.774 ] L_f = \frac{2 \mu_0 S}{\pi} \, \Big[ \ell n\Big(\frac{S }{R} \Big) - 0.774 \Big]

In this particular problem, S = 2 S = 2 , R = 0.005 R = 0.005 , and μ 0 = 1 \mu_0 = 1 . In the equation, n \ell n denotes the natural logarithm.

What is 1000 L a L f \Big \lfloor 1000 \frac{L_a}{L_f} \Big \rfloor ? Note that \lfloor \cdot \rfloor denotes the floor function.


The answer is 997.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Karan Chatrath
Jan 21, 2021

This was a very good one.

So to solve this, I have exploited the symmetry in the geometry in order to avoid crunching too many integrals. Unit current is assumed.

d 1 = 1 d_1 = 1 d 2 = 0.995 d_2 = 0.995

Consider the right edge of the current carrying loop. A point on that can be parameterised as such:

r 1 = ( d 1 , y 1 , 0 ) ; d 1 y 1 d 1 \vec{r}_1 = (d_1,y_1,0) \ ; \ -d_1 \le y_1 \le d_1 d r 1 = ( 0 , d y 1 , 0 ) d\vec{r}_1 = (0,dy_1,0)

Now, consider a point on the right side of the inner square

r 2 = ( d 2 , y 2 , 0 ) ; d 2 y 1 d 2 \vec{r}_2 = (d_2,y_2,0) \ ; \ -d_2 \le y_1 \le d_2 d r 2 = ( 0 , d y 2 , 0 ) d\vec{r}_2 = (0,dy_2,0)

The magnetic vector potential due to the current carrying wire at a point on the inner square is: d A 12 = μ o 4 π d r 1 r 2 r 1 d\vec{A}_{12} = \frac{\mu_o}{4\pi} \frac{d\vec{r}_1}{\lvert \vec{r}_2-\vec{r}_1\rvert}

The line integral of the the magnetic vector potential along the right edge of the inner circle is:

L 1 = C 1 d A 12 d r 2 L_1 = \oint_{C_1} d\vec{A}_{12} \cdot d\vec{r}_2

If this process were to be repeated for the top and bottom edge, the line integrals would evaluate to zero as the dot product between the current carrying element and the line elements are zero, as the two are orthogonal vectors.

This same process can be repeated for computing the line integral along the left edge of the inner square:

r 3 = ( d 2 , y 3 , 0 ) ; d 2 y 3 d 2 \vec{r}_3 = (-d_2,y_3,0) \ ; \ -d_2 \le y_3 \le d_2 d r 3 = ( 0 , d y 3 , 0 ) d\vec{r}_3 = (0,-dy_3,0)

L 2 = C 1 d A 13 d r 3 L_2 = \oint_{C_1} d\vec{A}_{13} \cdot d\vec{r}_3

Finally, the magnetic flux due to the right edge of the current carrying wire through the square is (By Stokes' theorem):

Φ = L 1 + L 2 \Phi = L_1 + L_2

By the symmetry of the problem, the magnitude and sign of the flux due to the other three sides will be the same. Therefore:

L a = 4 Φ L_a = 4\Phi

Finally,

L a L f 0.997 \frac{L_a}{L_f} \approx 0.997

Numerical details left out. I may modify the solution to add the code used to solve the integrals, later.

Nicely done. I have one more in mind

Steven Chase - 4 months, 3 weeks ago

Log in to reply

Looking forward to it

Karan Chatrath - 4 months, 3 weeks ago
Carsten Meyer
May 3, 2021

The loop with side-length S S lies at the center of an x y xy -coordinate system parallel to the axes, and a current I I flows around the loop counter-clockwise. We calculate the flux Φ \Phi through the (slightly smaller) area A A . By symmetry, each side of the loop contributes the same amount of flux, so we only need to consider the flux Φ \Phi' generated by the wire at the bottom y = S 2 y=-\frac{S}{2} : Φ = 4 Φ , Φ = μ 0 I 4 π C 2 C 1 < d l 1 , d l 2 > r 1 r 2 C 1 is the wire-piece at the bottom along I C 2 surrounds A counter-clockwise \begin{aligned} \Phi&=4\Phi', &&&\Phi'&=\frac{\mu_0 I}{4\pi}\int_{C_2}\int_{C_1}\frac{ <\vec{dl}_1,\:\vec{dl}_2> }{ \left|\vec{r}_1-\vec{r_2}\right| }&&&\left|\begin{aligned} &C_1\text{ is the wire-piece at the bottom along }I\\[.5em] &C_2\text{ surrounds }A\text{ counter-clockwise} \end{aligned}\right. \end{aligned} The vectors r 1 , 2 \vec{r}_{1,2} lead to all points on the curves C 1 , 2 C_{1,2} , respectively. The left and right side of C 2 C_2 are perpendicular to C 1 C_1 , so the scalar product and the integral over those sides vanish. We describe C 1 C_1 and the upper and lower pieces of C 2 C_2 : bottom wire piece C 1 : r 1 = S 2 ( u ; 1 ; 0 ) T , d C 1 = S 2 e x d u lower piece of C 2 : r 2 = S 2 ( v ; ( 1 c ) ; 0 ) T , d C 2 = S 2 e x d v upper piece of C 2 : r 2 = S 2 ( v ; 1 c ; 0 ) T , d C 2 = S 2 e x d v c : = 2 R S > 0 \begin{aligned}\left.\begin{aligned} \text{bottom wire piece }C_1:&&&& \vec{r}_1&=\frac{S}{2}(u;\:-1;\:0)^T, & && d\vec{C}_1&=\frac{S}{2}\vec{e}_xdu\\[.5em] \text{lower piece of }C_2:&&&& \vec{r}_2&=\frac{S}{2}(v;\:-(1-c);\:0)^T, & && d\vec{C}_2&=\frac{S}{2}\vec{e}_xdv\\[.5em] \text{upper piece of }C_2:&&&& \vec{r}_2&=\frac{S}{2}(-v;\:1-c;\:0)^T, & && d\vec{C}_2&=-\frac{S}{2}\vec{e}_xdv \end{aligned}\quad\right|c:= \frac{2R}{S} >0 \end{aligned} The description of C 1 , 2 C_{1,2} allows us to solve the flux integral. We begin with the lower piece of C 2 C_2 and substitute the parameter for the outer integral v : = 1 v c , v v ( ) v':=\frac{1\mp v}{c},\:v'\rightarrow v\quad (*) to combine both arsinh ( . . ) \operatorname{arsinh}(..) -terms: Φ l = μ 0 I 4 π S 2 ( 1 c ) 1 c 1 1 d u d v ( u v ) 2 + c 2 = μ 0 I S 8 π ( 1 c ) 1 c [ arsinh ( u v c ) ] 1 1 d v = ( ) μ 0 I S 8 π 2 c 1 V arsinh ( v ) d v = : μ 0 I S 4 π c ( G ( V ) G ( 1 ) ) V : = 2 c c \begin{aligned} \Phi'_l &= \frac{\mu_0 I}{4\pi} \cdot\frac{S}{2}\int_{-(1-c)}^{1-c}\int_{-1}^1\frac{du\:dv}{ \sqrt{(u-v)^2 + c^2} } = \frac{\mu_0 IS}{8\pi} \int_{-(1-c)}^{1-c}\left[ \operatorname{arsinh}\left(\frac{u-v}{c}\right) \right]_{-1}^1\:dv\\[.5em] &\underset{(*)}{=}\frac{\mu_0 IS}{8\pi}\cdot 2\cdot c \int_1^V\operatorname{arsinh}(v)\:dv=:\frac{\mu_0 IS}{4\pi}c(G(V)-G(1))\qquad\left|V:=\frac{2-c}{c}\right. \end{aligned} The missing anti-derivative G ( v ) G(v) is arsinh ( v ) d v = v arsinh ( v ) 1 + v 2 + C = : G ( v ) + C \begin{aligned} \int\operatorname{arsinh}(v)\:dv&=v\operatorname{arsinh}(v) - \sqrt{1+v^2}+C=:G(v)+C \end{aligned} With the exact same steps we used for the lower piece of C 2 C_2 we consider the upper piece to obtain Φ u = μ 0 I 4 π ( S 2 ) ( 1 c ) 1 c arsinh ( 1 v 2 c ) + arsinh ( 1 + v 2 c ) d u = μ 0 I S 4 π ( 2 c ) ( G ( 1 ) G ( V 1 ) ) \Phi'_u= \frac{\mu_0 I}{4\pi} \cdot\left(-\frac{S}{2}\right)\int_{-(1-c)}^{1-c} \operatorname{arsinh}\left(\frac{1-v}{2-c}\right) + \operatorname{arsinh}\left(\frac{1+v}{2-c}\right) \:du =-\frac{\mu_0 IS}{4\pi}(2-c)(G(1)-G(V^{-1}))
We can now compute the total flux Φ = 4 Φ \Phi = 4\Phi' and the self-inductance L a L_a : L a I = Φ = 4 Φ = 4 ( Φ l + Φ u ) = μ 0 I S π [ c G ( V ) + ( 2 c ) G ( V 1 ) 2 G ( 1 ) ] L_a I=\Phi=4\Phi'=4(\Phi'_l+\Phi'_u)=\frac{\mu_0 IS}{\pi}\left[ cG(V) + (2-c)G(V^{-1})-2G(1) \right] If we compare our result with the approximation L f L_f , we get L a L f = c G ( V ) + ( 2 c ) G ( V 1 ) 2 G ( 1 ) 2 [ log ( S R ) 0.774 ] 0.9973 1000 L a L f = 997 \begin{aligned} \frac{L_a}{L_f} &= \frac{ cG(V)+ (2-c)G(V^{-1})-2G(1) }{ 2\left[ \log(\frac{S}{R}) - 0.774 \right] } \approx 0.9973&&&\Rightarrow &&&& \left\lfloor1000\frac{L_a}{L_f}\right\rfloor &= \boxed{997} \end{aligned}


Rem.: This was an interesting journey into approximation. I'm pretty sure the approximation given in this problem was derived this way - if we consider small radii 0 < R S 0<R\ll S and therefore c 0 , V c\rightarrow 0,\:V\rightarrow\infty , all terms converge except for c G ( V ) cG(V) : c G ( V ) = ( 2 c ) V 1 G ( V ) 2 ( arsinh ( V ) 1 + V 2 ) 2 ( log ( V ) + log ( 2 ) 1 ) 2 ( log ( S R ) + log ( 2 ) 1 ) \begin{aligned} cG(V)&=(2-c)V^{-1}G(V)\rightarrow 2\left( \operatorname{arsinh}(V) -\sqrt{1+V^{-2}} \right)\rightarrow 2\left( \log(V)+\log(2)-1 \right)\rightarrow 2\left( \log\left(\frac{S}{R}\right)+\log(2)-1 \right) \end{aligned} Adding all converging constants, we get the approximation for small radii L a 2 μ 0 S π ( log ( S R ) + log ( 2 ) 2 log ( 1 + 2 ) + 2 ) 2 μ 0 S π ( log ( S R ) 0.7740 ) \begin{aligned} L_a&\rightarrow \frac{2\mu_0 S}{\pi}\left( \log\left(\frac{S}{R}\right)+\log(2)-2-\log\left(1+\sqrt{2}\right)+\sqrt{2} \right)\approx\frac{2\mu_0 S}{\pi}\left( \log\left(\frac{S}{R}\right)-0.7740 \right) \end{aligned}


Rem.: For those unfamiliar with the formula, we derive the flux Φ \Phi from both "Biot-Savard's Law" and "Stoke's Theorem" (ST) via B ( r ) = r × A ( r ) A ( r ) = μ 0 I 4 π C 1 d l 1 r r 1 Φ = A B ( r ) d A = A r × A ( r ) d A = ST C 2 A ( r 2 ) d l 2 = μ 0 I 4 π C 2 C 1 < d l 1 , d l 2 > r 1 r 2 \begin{aligned} &&\vec{B}(r)&=\nabla_{\vec{r}}\times\vec{A}(\vec{r}) \qquad\left| \vec{A}(\vec{r})=\frac{\mu_0 I}{4\pi}\int_{C_1}\frac{\vec{dl}_1}{|\vec{r}-\vec{r}_1|} \right.\\[.5em] \Rightarrow&&\Phi&=\int_A\vec{B}(\vec{r})\:d\vec{A}=\int_A\nabla_{\vec{r}}\times\vec{A}(\vec{r})\:d\vec{A}\underset{\text{ST}}{=}\int_{C_2}\vec{A}(\vec{r}_2)\:\vec{dl}_2=\frac{\mu_0I}{4\pi}\int_{C_2}\int_{C_1}\frac{<\vec{dl}_1,\:\vec{dl}_2>}{|\vec{r}_1-\vec{r}_2|} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...