Semicircle in a Right Triangle!

Geometry Level pending

In a right A B C \triangle{ABC} , the inscribed semicircle is centered at E E with radius r r and tangent to A B \overline{AB} at D D and A C \overline{AC} at F F and A C = x \overline{AC} = x and A B = 2 x \overline{AB} = 2x .

Let A p A_{p} be the area of the pink region. Then A p r 2 = α β β ( β arctan ( β ) ( π α ) ) \dfrac{A_{p}}{r^2} = \dfrac{\alpha}{\beta^{\beta}}(\beta\arctan(\beta) - (\pi - \alpha)) , where α \alpha and β \beta are coprime positive integers. Find α + β \alpha + \beta .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

We note that C E F \triangle CEF and A B C \triangle ABC are similar. Since E F = r EF = r , then F C = 1 2 r FC = \frac 12 r . Let E F C = θ \angle EFC = \theta , then

A p = [ C E F ] θ 2 r 2 where [ C E F ] denotes the area of C E F = 1 2 r r 2 θ 2 r 2 A p r 2 = 1 4 θ 2 = 1 4 ( 1 2 tan 1 1 2 ) = 1 4 ( 1 2 π 2 + 2 tan 1 2 ) = 1 4 ( 2 tan 1 2 ( π 1 ) ) \begin{aligned} A_p & = [CEF] - \frac \theta 2 r^2 & \small \blue{\text{where }[CEF] \text{ denotes the area of }\triangle CEF} \\ & = \frac 12 \cdot r \cdot \frac r2 - \frac \theta 2 r^2 \\ \frac {A_p}{r^2} & = \frac 14 - \frac \theta 2 = \frac 14 \left(1 - 2 \tan^{-1} \frac 12\right) \\ & = \frac 14\left(1 - 2 \cdot \frac \pi 2 + 2 \tan^{-1} 2 \right) \\ & = \frac 14 \left(2 \tan^{-1} 2 - (\pi - 1)\right) \end{aligned}

Therefore α + β = 1 + 2 = 3 \alpha + \beta = 1+2 = \boxed 3 .

David Vreken
Feb 6, 2021

Let A A be at A ( 0 , 0 ) A(0, 0) and let the radius of the semi-circle be r = 1 r = 1 .

Then F F is at F ( 1 , 0 ) F(1, 0) and E E is at E ( 1 , 1 ) E(1, 1) , and since the slope of the hypotenuse is 2 -2 , it has an equation of y = 2 ( x 1 ) + 1 y = -2(x - 1) + 1 , which intersects C C at C ( 3 2 , 0 ) C(\cfrac{3}{2}, 0) .

Then the area of E F C \triangle EFC is A E F C = 1 2 1 2 1 = 1 4 A_{\triangle EFC} = \cfrac{1}{2} \cdot \cfrac{1}{2} \cdot 1 = \cfrac{1}{4} , and the area of the sector of the A E F C = π 2 arctan ( 2 ) 2 π π 1 2 = π 2 arctan ( 2 ) 4 A_{EFC} = \cfrac{\frac{\pi}{2} - \arctan(2)}{2\pi} \cdot \pi \cdot 1^2 = \cfrac{\pi - 2\arctan(2)}{4} .

Therefore, A p = A E F C A E F C = 1 4 ( π 2 arctan ( 2 ) 4 ) = 1 2 2 ( 2 arctan ( 2 ) ( π 1 ) ) A_p = A_{\triangle EFC} - A_{EFC} = \cfrac{1}{4} - (\cfrac{\pi - 2\arctan(2)}{4}) = \cfrac{1}{2^2}(2 \arctan(2) - (\pi - 1)) , so that α = 1 \alpha = 1 , β = 2 \beta = 2 and α + β = 3 \alpha + \beta = \boxed{3} .

Rocco Dalto
Feb 5, 2021

B D E E F C x r r = r 2 x r 2 x 2 3 x r + r 2 = r 2 \triangle{BDE} \sim \triangle{EFC} \implies \dfrac{x - r}{r} = \dfrac{r}{2x - r} \implies 2x^2 - 3xr + r^2 = r^2 \implies

x ( 2 x 3 r ) = 0 x(2x - 3r) = 0 and x 0 x = 3 r 2 x r = r 2 x \neq 0 \implies x = \dfrac{3r}{2} \implies x - r = \dfrac{r}{2} \implies A F E C = r 2 4 A_{\triangle{FEC}} =\dfrac{r^2}{4}

and tan ( θ ) = 2 A s e c t o r ( E F G ) = 1 2 ( π 2 arctan ( 2 ) ) r 2 \tan(\theta) = 2 \implies A_{sector(EFG)} = \dfrac{1}{2}(\dfrac{\pi}{2} - \arctan(2))r^2 \implies

A p = A F E C A s e c t o r ( E F G ) = 1 4 ( 2 arctan ( 2 ) ( π 1 ) ) r 2 A_{p} = A_{\triangle{FEC}} - A_{sector(EFG)} = \dfrac{1}{4}(2\arctan(2) - (\pi - 1))r^2 \implies

A p r 2 = 1 4 ( 2 arctan ( 2 ) ( π 1 ) ) = α β β ( β arctan ( β ) ( π α ) ) \dfrac{A_{p}}{r^2} = \dfrac{1}{4}(2\arctan(2) - (\pi - 1)) = \dfrac{\alpha}{\beta^{\beta}}(\beta\arctan(\beta) - (\pi - \alpha))

α + β = 3 \implies \alpha + \beta = \boxed{3} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...