Semicircles inscribed in a Trapezoid!

Geometry Level 4

Two semicircles are inscribed in trapezoid A B C D ABCD as shown above, where the smaller semicircle has diameter d d and the larger semicircle has diameter 4 d 4d and B \angle{B} and C \angle{C} are right angles.

If A A B C D d 2 = a b \dfrac{A_{ABCD}}{d^2} = \dfrac{a}{b} , where a a and b b are coprime positive integers, find a + b a + b .


The answer is 457.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Apr 24, 2021

Using the diagram above O M O N O D A P O \triangle{O'MO} \sim \triangle{NOD} \sim \triangle{APO'}

Using the Pythagorean theorem on O M O R T = O M = 25 4 d 2 9 4 d 2 = 2 d \triangle{OMO'} \implies \overline{RT} = \overline{O'M} = \sqrt{\dfrac{25}{4}d^2 - \dfrac{9}{4}d^2} = 2d

O M O N O D 1 = 2 N D 3 d N D = 3 2 d C D = C N + N D = 7 2 d \triangle{O'MO} \sim \triangle{NOD} \implies 1 = \dfrac{2\overline{ND}}{3d} \implies \overline{ND} = \dfrac{3}{2}d \implies \boxed{\overline{CD} = \overline{CN} + \overline{ND} = \dfrac{7}{2}d}

A P O O M O 5 = 3 d 2 O P O P = 3 10 d \triangle{APO'} \sim \triangle{O'MO} \implies 5 = \dfrac{3d}{2\overline{O'P}} \implies \overline{O'P} = \dfrac{3}{10}d \implies

A B = R O O P = 1 5 d \boxed{\overline{AB} = \overline{RO'} - \overline{O'P} = \dfrac{1}{5}d}

and 5 = 2 d A P A P = 2 5 d = B R 5 = \dfrac{2d}{\overline{AP}} \implies \overline{AP} = \dfrac{2}{5}d = \overline{BR}

B C = B R + R T + T C = 22 5 d \implies \boxed{\overline{BC} = \overline{BR} + \overline{RT} + \overline{TC} = \dfrac{22}{5}d}

A A B C D = 1 2 ( A B + C D ) B C = 407 50 d 2 A A B C D d 2 = 407 50 = a b \implies A_{ABCD} = \dfrac{1}{2}(\overline{AB} + \overline{CD})\overline{BC} = \dfrac{407}{50}d^2 \implies \dfrac{A_{ABCD}}{d^2} = \dfrac{407}{50} = \dfrac{a}{b}

a + b = 457 \implies a + b = \boxed{457} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...