Sep 2019 CSAT mock test for Sciences, #30

Calculus Level 5

A function f ( x ) f(x) is differentiable over all reals, and satisfies f ( x 2 + x + 1 ) = π f ( 1 ) sin π x + f ( 3 ) x + 5 x 2 . f'(x^2+x+1)=\pi f(1) \sin \pi x + f(3)x+5x^2. Find f ( 7 ) . f(7).


The answer is 93.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Boi (보이)
Sep 9, 2019

( 2 x + 1 ) f ( x 2 + x + 1 ) = f ( 1 ) × ( 2 x + 1 ) π sin π x + f ( 3 ) x ( 2 x + 1 ) + 5 x 2 ( 2 x + 1 ) (2x+1)f '(x^2+x+1)=f(1)\times (2x+1)\pi\sin\pi x +f(3)x(2x+1)+5x^2(2x+1)

Integrate both sides,

f ( x 2 + x + 1 ) = { ( 2 x + 1 ) cos π x + 2 π sin π x } f ( 1 ) + ( 2 3 x 3 + 1 2 x 2 ) f ( 3 ) + 5 2 x 4 + 5 3 x 3 + C . f(x^2+x+1)=\left\{-(2x+1)\cos\pi x+\frac{2}{\pi}\sin\pi x\right\}f(1)+\left(\dfrac{2}{3}x^3+\dfrac{1}{2}x^2\right)f(3)+\dfrac{5}{2}x^4+\dfrac{5}{3}x^3+C.

Substitute x = 0 x=0 and x = 1 , x=-1, (since then x 2 + x + 1 = 1 x^2+x+1=1 )

x = 0 : f ( 1 ) = f ( 1 ) + C , 2 f ( 1 ) = C . x = 1 : f ( 1 ) = f ( 1 ) 1 6 f ( 3 ) + 5 6 + C , 2 f ( 1 ) = 1 6 f ( 3 ) + 5 6 + C . \begin{aligned}x=0:&~~f(1)=-f(1)+C,~\boxed{2f(1)=C}. \\ \text{} \\ x=-1:&~~f(1)=-f(1)-\dfrac{1}{6}f(3)+\dfrac{5}{6}+C,~2f(1)=-\dfrac{1}{6}f(3)+\dfrac{5}{6}+C.\end{aligned}

It is immediate that f ( 3 ) = 5. f(3)=5. Substitute x = 1 , x=1,

x = 1 : f ( 3 ) = 3 f ( 1 ) 10 3 f ( 3 ) + 80 3 + C , 3 f ( 1 ) = C 5 . x=1:~f(3)=3f(1)-\dfrac{10}{3}f(3)+\dfrac{80}{3}+C,~\boxed{3f(1)=-C-5}.

Solve the two boxed equations, and you get f ( 1 ) = 1 , C = 2. f(1)=-1,~C=-2. Hence,

f ( x 2 + x + 1 ) = ( 2 x + 1 ) cos π x 2 π sin π x + 5 2 x 4 + 5 x 3 + 5 2 x 2 2. f(x^2+x+1)=(2x+1)\cos\pi x-\frac{2}{\pi}\sin\pi x+\dfrac{5}{2}x^4+5x^3+\dfrac{5}{2}x^2-2.

Substitute x = 2 , x=2,

x = 2 : f ( 7 ) = 5 + 40 + 40 + 10 2 = 93 . x=2:~f(7)=5+40+40+10-2=\boxed{93}.

Great solution!

Chris Lewis - 1 year, 9 months ago

Just a small detail, in the last step it's positive 5 5 instead of 5 -5 . The total is still 93 93 , it's just a typo. :)

Guilherme Niedu - 1 year, 9 months ago

Log in to reply

Thank you!

Boi (보이) - 1 year, 8 months ago
Chew-Seong Cheong
Sep 11, 2019

Given that:

f ( x 2 + x + 1 ) = π f ( 1 ) sin π x + f ( 3 ) x + 5 x 2 Putting x = 0 f ( 1 ) = 0 Putting x = 1 f ( 1 ) = 0 f ( 3 ) + 5 f ( 3 ) + 5 = 0 f ( 3 ) = 5 \begin{aligned} f'(x^2+x+1) & = \pi f(1) \sin \pi x + f(3) x + 5x^2 & \small \color{#3D99F6} \text{Putting }x = 0 \\ f'(1) & = 0 & \small \color{#3D99F6} \text{Putting }x = -1 \\ f'(1) & = 0 - f(3) + 5 \\ \implies -f(3)+5 & = 0 \\ f(3) & = 5 \end{aligned}

f ( x 2 + x + 1 ) = π f ( 1 ) sin π x + 5 x + 5 x 2 Let u = x 2 + x + 1 d u = ( 2 x + 1 ) d x f ( u ) d u = ( π f ( 1 ) sin π x + 5 x + 5 x 2 ) ( 2 x + 1 ) d x Integrate both sides w,r,t, u = π f ( 1 ) ( 2 x + 1 ) sin π x + 10 x 3 + 15 x 2 + 5 x d x \begin{aligned} f'(x^2+x+1) & = \pi f(1) \sin \pi x + 5 x + 5x^2 & \small \color{#3D99F6} \text{Let }u = x^2 + x + 1 \implies du = (2x+1)\ dx \\ \int f'(u) \ du & = \int \left(\pi f(1) \sin \pi x + 5 x + 5x^2\right)(2x+1)\ dx & \small \color{#3D99F6} \text{Integrate both sides w,r,t, }u \\ & = \int \pi f(1) (2x+1) \sin \pi x + 10x^3 + 15x^2 + 5x \ dx \end{aligned}

Then the equation becomes:

1 3 f ( u ) d u = 0 1 π f ( 1 ) ( 2 x + 1 ) sin π x + 10 x 3 + 15 x 2 + 5 x d x f ( 3 ) f ( 1 ) = f ( 1 ) ( 2 x + 1 ) cos π x + 2 f ( 1 ) cos π x d x + 5 2 x 4 + 5 x 3 + 5 2 x 2 0 1 Integration by parts = 4 f ( 1 ) + 2 f ( 1 ) sin π x π 0 1 + 5 2 + 5 + 5 2 = 4 f ( 1 ) + 10 5 f ( 1 ) = f ( 3 ) 10 = 5 f ( 1 ) = 1 \begin{aligned} \int_1^3 f'(u) \ du & = \int_0^1 \pi f(1) (2x+1) \sin \pi x + 10x^3 + 15x^2 + 5x \ dx \\ f(3) - f(1) & = {\color{#3D99F6} - f(1)(2x+1)\cos \pi x + \int 2f(1) \cos \pi x \ dx} + \frac 52 x^4 + 5x^3 + \frac 52 x^2 \ \bigg|_0^1 & \small \color{#3D99F6} \text{Integration by parts} \\ & = 4f(1) + \frac {2f(1)\sin \pi x}\pi \ \bigg|_0^1 + \frac 52 + 5 + \frac 52 = 4f(1) + 10 \\ \implies 5f(1) & = f(3) - 10 = - 5 \\ f(1) & = -1 \end{aligned}

Similarly,

f ( 7 ) f ( 1 ) = ( 2 x + 1 ) cos π x 2 sin π x π + 5 2 x 4 + 5 x 3 + 5 2 x 2 0 2 f ( 7 ) + 1 = 4 0 + 40 + 40 + 10 f ( 7 ) = 93 \begin{aligned} f(7) - f(1) & = (2x+1)\cos \pi x - \frac {2\sin \pi x}\pi + \frac 52 x^4 + 5x^3 + \frac 52 x^2 \ \bigg|_0^2 \\ f(7) +1 & = 4 - 0 + 40 + 40 + 10 \\ \implies f(7) & = \boxed{93} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...