Separate and conquer

Geometry Level 5

n = 1 cos ( n π 3 ) 3 n = α β \sum _{ n=1 }^{ \infty }{ \dfrac { \cos { \left( \frac { n \pi }{ 3 } \right) } }{ { 3 }^{ n } } } =\frac { \alpha }{ \beta } The equation above holds true for coprime positive integers α \alpha and β \beta . Find α + β \alpha+\beta .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Taylor Series - Problem Solving

S = n = 1 cos ( n π 3 ) 3 n = n = 1 ( e n π 3 i ) 3 n = [ n = 1 ( e π 3 i 3 ) n ] = [ e π 3 i 3 1 e π 3 i 3 ] = [ e π 3 i 3 e π 3 i ] = [ 1 2 + 3 2 i 3 1 2 3 2 i ] = [ 1 + 3 i 5 3 i ] = [ ( 1 + 3 i ) ( 5 + 3 i ) ( 5 3 i ) ( 5 + 3 i ) ] = [ 2 + 6 3 i 28 ] = 1 14 \begin{aligned} S & = \sum_{n=1}^\infty \frac {\cos \left(\frac {n \pi}3 \right)}{3^n} = \sum_{n=1}^\infty \frac {\Re \left( e^{\frac {n \pi}3 i} \right)}{3^n} = \Re \left[ \sum_{n=1}^\infty \left( \frac {e^{\frac \pi 3 i}}3 \right)^n \right] \\ & = \Re \left[ \frac {\frac {e^{\frac \pi 3 i}}3}{1 - \frac {e^{\frac \pi 3 i}}3} \right] = \Re \left[ \frac {e^{\frac \pi 3 i}}{3 - e^{\frac \pi 3 i}} \right] = \Re \left[ \frac {\frac 12 + \frac {\sqrt 3}2i}{3 - \frac 12 - \frac {\sqrt 3}2i} \right] \\ & = \Re \left[ \frac {1 + \sqrt 3 i}{5 - \sqrt 3 i} \right] = \Re \left[ \frac {(1 + \sqrt 3 i)(5 + \sqrt 3 i)}{(5 - \sqrt 3 i)(5 + \sqrt 3 i)} \right] \\ & = \Re \left[ \frac {2 + 6\sqrt 3 i}{28} \right] = \frac 1{14} \end{aligned}

α + β = 1 + 14 = 15 \implies \alpha + \beta = 1 + 14 = \boxed{15}

Rishabh Jain
Jul 9, 2016

Relevant wiki: Taylor Series Manipulation

Call the expression G \mathcal G and write cos ( n π 3 ) = e n π i 3 + e n π i 3 2 \small{\color{teal}{\cos \left(\dfrac{n\pi}3\right)=\dfrac{e^{\large\frac{n\pi i}3}+e^{\large\frac{-n\pi i}3}}2}} .

G = 1 2 [ n = 1 ( e π i 3 3 ) n Infinite GP + n = 1 ( e π i 3 3 ) n Infinite GP ] \mathcal G=\dfrac 12 \left[\displaystyle \sum_{n=1}^{\infty}\underbrace{\left(\dfrac{ e^{\frac{\pi i}3}}3\right)^n}_{\text{Infinite}\\\text{ GP}}+\displaystyle \sum_{n=1}^{\infty}\underbrace{\left(\dfrac{ e^{\frac{-\pi i}3}}3\right)^n}_{\text{Infinite}\\ \text{ GP}}\right]

= 1 2 [ e π i 3 3 1 e π i 3 3 + e π i 3 3 1 e π i 3 3 ] =\dfrac 12\left[\dfrac{\dfrac{ e^{\frac{\pi i}3}}3 }{1-\dfrac{ e^{\frac{\pi i}3}}3}+\dfrac{\dfrac{ e^{\frac{-\pi i}3}}3 }{1- \dfrac{ e^{\frac{-\pi i}3}}3}\right]

Taking LCM and simplifying gives G = 1 14 \mathcal G=\dfrac 1{14} . 1 + 14 = 15 \large 1+14=\boxed{15} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...