Septic Sums

Geometry Level 5

A regular heptagon is inscribed in the unit circle. What is the value of A B 4 + A C 4 + A D 4 + A E 4 + A F 4 + A G 4 AB^4 + AC^4 + AD^4 +AE^4 + AF^4 + AG^4 ?


The answer is 42.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 16, 2021

Let O O be the center of the unit circle. By cosine rule , we have A B 2 = O A 2 + O B 2 2 O A O B cos 2 π 7 = 2 ( 1 cos 2 π 7 ) A B 4 = 4 ( 1 cos 2 π 7 ) 2 AB^2 = OA^2 + OB^2 - 2\cdot OA \cdot OB \cdot \cos \frac {2\pi}7 = 2\left(1-\cos \frac {2\pi}7 \right) \implies AB^4 = 4\left(1-\cos \frac {2\pi}7 \right)^2 . Similarly, A C 4 = 4 ( 1 cos 4 π 7 ) 2 AC^4 = 4\left(1-\cos \frac {4\pi}7 \right)^2 and A D 4 = 4 ( 1 cos 6 π 7 ) 2 AD^4 = 4\left(1-\cos \frac {6\pi}7 \right)^2 . Then the sum of the six terms is:

S = 8 ( ( 1 cos 2 π 7 ) 2 + ( 1 cos 4 π 7 ) 2 + ( 1 cos 6 π 7 ) 2 ) = 8 ( 3 2 ( cos 2 π 7 + cos 4 π 7 + cos 6 π 7 ) + cos 2 2 π 7 + cos 2 4 π 7 + cos 2 6 π 7 ) = 8 ( 3 2 ( 1 2 ) + 1 2 ( 3 + cos 4 π 7 + cos 8 π 7 + cos 12 π 7 ) ) = 8 ( 4 + 1 2 ( 3 ( cos 3 π 7 + cos π 7 + cos 5 π 7 ) ) ) = 32 + 4 ( 3 1 2 ) = 32 + 10 = 42 \begin{aligned} S & = 8 \left(\left(1-\cos \frac {2\pi}7 \right)^2 + \left(1-\cos \frac {4\pi}7 \right)^2 + \left(1-\cos \frac {6\pi}7 \right)^2 \right) \\ & = 8 \left(3 - 2 \left(\blue{\cos \frac {2\pi}7 + \cos \frac {4\pi}7 + \cos \frac {6\pi}7}\right) + \cos^2 \frac {2\pi}7 + \cos^2 \frac {4\pi}7 + \cos^2 \frac {6\pi}7 \right) \\ & = 8 \left(3 - 2 \left(\blue{-\frac 12}\right) + \frac 12 \left(3 + \cos \frac {4\pi}7 + \cos \frac {8\pi}7 + \cos \frac {12\pi}7 \right) \right) \\ & = 8 \left(4+ \frac 12 \left(3 - \left(\blue{\cos \frac {3\pi}7 + \cos \frac {\pi}7 + \cos \frac {5\pi}7} \right) \right) \right) \\ & = 32 + 4 \left(3 - \blue{\frac 12} \right) = 32 + 10 = \boxed{42} \end{aligned}

Mark Hennings
Mar 15, 2021

Instead of A , B , C , D , E , F , G A,B,C,D,E,F,G , label the vertices Z j Z_j for 0 j 6 0 \le j \le 6 . If z = e 2 π i 7 z = e^{\frac{2\pi i}{7}} , for 0 j 6 0 \le j \le 6 , then Z j Z_j represents z j z^j on the Argand diagram, and so j = 1 6 Z j Z 0 4 = j = 1 6 z j 1 4 = j = 1 6 ( 2 z j z j ) 2 = j = 1 6 ( 4 + z 2 j + z 2 j 4 z j 4 z j + 2 ) = 36 + j = 1 6 ( z 2 j + z 2 j 4 z j 4 z j ) = 42 + j = 0 6 ( z 2 j + z 2 j 4 z j 4 z j ) = 42 \begin{aligned} \sum_{j=1}^6 Z_jZ_0^4 & = \; \sum_{j=1}^6 \big|z^j - 1\big|^4 \; = \; \sum_{j=1}^6\big(2 - z^j - z^{-j}\big)^2 \\ & = \; \sum_{j=1}^6\big(4 + z^{2j} + z^{-2j} - 4z^{j} - 4z^{-j} + 2\big) \; = \; 36 + \sum_{j=1}^6 \big(z^{2j} + z^{-2j} - 4z^{j} - 4z^{-j}\big) \\ & = \; 42 + \sum_{j=0}^6 \big(z^{2j} + z^{-2j} - 4z^{j} - 4z^{-j}\big) \; =\; \boxed{42} \end{aligned}

Yuriy Kazakov
Mar 16, 2021

Fine problem. N=6,7,8,9,10,11... S(N)=36,42,48,54,60,66...

True (and obvious by generalising the expression @Mark Hennings gave for the sum).

Thanos Petropoulos - 2 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...