Sequence!

Algebra Level 3

n = 0 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) = 1 X , X = ? \large \sum_{n=0}^\infty \frac1{(n+1)(n+2)(n+3)(n+4)} = \frac1X \quad,\quad X = \ ?


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Sanjeet Raria
Nov 4, 2014

Considering 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) \frac{1}{(n+1)(n+2)(n+3)(n+4)} = 1 3 ( 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) 1 ( n + 2 ) ( n + 3 ) ( n + 4 ) ) =\frac{1}{3}(\frac{1}{(n+1)(n+2)(n+3)}-\frac{1}{(n+2)(n+3)(n+4)}) = 1 3 ( 1 f ( n ) 1 f ( n + 1 ) ) , f ( n ) = ( n + 1 ) ( n + 2 ) ( n + 3 ) =\frac{1}{3}(\frac{1}{f(n)}-\frac{1}{f(n+1)}),\space f(n)=(n+1)(n+2)(n+3) The required expression is now equal to = n = 0 1 3 ( 1 f ( n ) 1 f ( n + 1 ) ) = \sum_{n=0}^{\infty} \frac{1}{3}(\frac{1}{f(n)}-\frac{1}{f(n+1)}) = 1 3 [ ( 1 f ( 0 ) 1 f ( 1 ) ) + ( 1 f ( 1 ) 1 f ( 2 ) ) + + + + t e r m s = \frac{1}{3} [(\frac{1}{f(0)}- \frac{1}{f(1)}) + (\frac{1}{f(1)}- \frac{1}{f(2)})++++ \infty \space terms = 1 3 [ 1 f ( 0 ) 1 ] =\frac{1}{3}[\frac{1}{f(0)}- \frac{1}{\infty}] = 1 3 1 f ( 0 ) = 1 3 1 1 2 3 =\frac{1}{3}•\frac{1}{f(0)}=\frac{1}{3}•\frac{1}{1•2•3} = 1 18 \Large =\frac{1}{18}

Hence answer is 18 \Large \boxed {18}

One can even generalize this idea to get the sum any number of terms

This is a better way for solution.

Panya Chunnanonda - 6 years, 7 months ago

Really very impressive method. Congratulations.

Niranjan Khanderia - 6 years, 7 months ago

Log in to reply

Thank you sir.

Sanjeet Raria - 6 years, 7 months ago

Nice solution sir. ¨ \ddot \smile

Vishwak Srinivasan - 5 years, 11 months ago

Log in to reply

Good to see you here too! Keep it up.

Sanjeet Raria - 5 years, 11 months ago

I kinda cheated though. I wrote a C++ program to find the value. :D

Prasun Biswas - 6 years, 6 months ago
Rudresh Tomar
Nov 4, 2014

telescopic method! nice one

Nihar Mahajan - 6 years, 7 months ago

Your 2nd and 3rd lines are some thing I never thought of . Thanks for adding to my knowledge.

Niranjan Khanderia - 6 years, 7 months ago

Integration is easier than telescoping, I guess. Though, I will contradict with that one because one has to take 4 times integration of one thing only.

Kartik Sharma - 6 years, 4 months ago

E x p . = 0 1 ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) = 2 1 ( n 1 ) n ( n + 1 ) ( n + 2 ) S p l i t i n g i n t o p a r t i a l f r a c t i o n s Exp. =\sum_0^\infty \dfrac{1}{(n+1)(n+2)(n+3)(n+4)} =\sum_2^\infty \dfrac{1}{(n-1)n(n+1)(n+2)} \\Spliting~into~partial fractions~\\ E x p . = 2 1 6 ( n 1 ) 2 1 6 ( n + 2 ) 2 1 2 n + 2 1 2 ( n + 1 ) . . . . ( 1 ) Exp. = \sum_2^\infty \dfrac{1}{6(n-1)} - \sum_2^\infty \dfrac{1}{6(n+2)} - \sum_2^\infty \dfrac{1}{2n} + \sum_2^\infty \dfrac{1}{2(n+1)} ....(1) \\
1 s t t e r m f r o m ( 1 ) . . . . 2 1 6 ( n 1 ) = 2 4 1 6 ( n 1 ) + 5 1 6 ( n 1 ) . l a s t t e r m f r o m a b o v e 5 1 6 ( n 1 ) = 2 1 6 ( n + 2 ) = 2 n d t e r m f r o m ( 1 ) a n d 1st~ term~from ~(1)....\sum_2^\infty \dfrac{1}{6(n-1)} = \sum_2^4 \dfrac{1}{6(n-1)} + \sum_5^\infty \dfrac{1}{6(n-1)}. \\ last~ term~from ~above \sum_5^\infty \dfrac{1}{6(n-1)} = \sum_2^\infty \dfrac{1}{6(n+2)} = -2nd~ term~from~(1) \\~and \\
3 r d t e r m f r o m ( 1 ) 2 1 2 n = 2 2 1 2 n 3 1 2 n . l a s t t e r m f r o m a b o v e 3 1 2 n = 2 1 2 ( n + 1 ) = 4 t h t e r m f r o m ( 1 ) a n d 3rd ~term~from~(1)~ - \sum_2^\infty \dfrac{1}{2n} =- \sum_2^2 \dfrac{1}{2n} - \sum_3^\infty \dfrac{1}{2n}. \\ last~ term~from ~above \sum_3^\infty \dfrac{1}{2n} = - \sum_2^\infty \dfrac{1}{2(n+1)}=- 4th~term ~from~(1) \\~and \\
E x p . r e d u c e s t o , E x p . = 2 4 1 6 ( n 1 ) 2 2 1 2 n E x p . = 1 6 ( 1 + 1 / 2 + 1 / 3 ) 1 2 1 2 = 1 18 18 Exp.~ reduces~ to,\\ Exp. = \sum_2^4 \dfrac{1}{6(n-1)} - \sum_2^2 \dfrac{1}{2n}\\ Exp. = \dfrac{1}{6}*(1 + 1/2 + 1/3) - \dfrac{1}{2}* \dfrac{1}{2} = \dfrac{1}{18}\\ \boxed{18} \\


Sanjeet Raria's method is out of the box and much better, but I gave the method above as the normal method. I made finding partial fraction a little easy by shifting the summation starting at 0 to one starting at 2. I have not shown how to find partial fraction assuming that, that can be done with out difficulty.

Raj Rajput
Jun 27, 2015

Noel Lo
Jun 8, 2015

1 ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) = ( 1 n + 1 1 n + 2 ) ( 1 n + 3 1 n + 4 ) \frac{1}{(n+1)(n+2)(n+3)(n+4)} = (\frac{1}{n+1}-\frac{1}{n+2})(\frac{1}{n+3} - \frac{1}{n+4})

= 1 6 ( n + 1 ) 1 2 ( n + 2 ) + 1 2 ( n + 3 ) 1 6 ( n + 4 ) = \frac{1}{6(n+1)} - \frac{1}{2(n+2)} +\frac{1}{2(n+3)} - \frac{1}{6(n+4)}

So we have 1 6 1 2 2 + 1 2 3 1 6 4 \frac{1}{6} - \frac{1}{2*2} + \frac{1}{2*3} - \frac{1}{6*4}

+ 1 6 2 1 2 3 + 1 2 4 1 6 5 + \frac{1}{6*2} - \frac{1}{2*3} + \frac{1}{2*4} - \frac{1}{6*5}

+ 1 6 3 1 2 4 + 1 2 5 1 6 6 + . . . + \frac{1}{6*3} - \frac{1}{2*4} + \frac{1}{2*5} -\frac{1}{6*6}+...

= 1 6 3 = 1 18 \frac{1}{6*3} = \frac{1}{18} so X = 18 X = \boxed{18} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...