Sequence and Series 1

Algebra Level 4

1 2 ( 1 2 + 1 3 ) + 2 2 ( 1 2 2 + 1 3 2 ) + 3 2 ( 1 2 3 + 1 3 3 ) + = n = 1 n 2 ( 1 2 n + 1 3 n ) \dfrac{1}{2}\left( \dfrac{1}{2}+\frac{1}{3} \right) + \dfrac{2}{2}\left( \dfrac{1}{2^2}+\frac{1}{3^2} \right) + \dfrac{3}{2}\left( \dfrac{1}{2^3}+\frac{1}{3^3} \right) + \cdots = \displaystyle \sum^{\infty}_{n=1}\dfrac{n}{2}\left( \dfrac{1}{2^n} + \dfrac{1}{3^n}\right)

If the value of the series above is equal to A B \dfrac AB , where A A and B B are positive integers, find A + B A+B .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mateus Gomes
Jan 18, 2016

n = 1 n 2 ( 1 2 n + 1 3 n ) = 1 2 n = 1 ( n 2 n + n 3 n ) = 1 2 [ n = 1 ( n 2 n ) + ( n = 1 n 3 n ) ] \displaystyle \sum^{\infty}_{n=1}\dfrac{n}{2}\left( \dfrac{1}{2^n} + \dfrac{1}{3^n}\right)=\frac{1}{2}\sum^{\infty}_{n=1}( \dfrac{n}{2^n} + \dfrac{n}{3^n})=\frac{1}{2}[\sum^{\infty}_{n=1}( \dfrac{n}{2^n}) +(\sum^{\infty}_{n=1}\dfrac{n}{3^n})] n = 1 ( n 2 n ) = S 1 = ( 1 2 1 ) + ( 2 2 2 ) + ( 3 2 3 ) + ( 4 2 4 ) . . . ( 1 ) \sum^{\infty}_{n=1}( \dfrac{n}{2^n})=S_1=( \dfrac{1}{2^1})+( \dfrac{2}{2^2})+( \dfrac{3}{2^3})+( \dfrac{4}{2^4})...~~(1) S 1 2 = ( 1 2 2 ) + ( 2 2 3 ) + ( 3 2 4 ) + ( 4 2 5 ) . . . ( 2 ) ~~~~~~~~~~~~~~~~~~~~\frac{S_1}{2}=( \dfrac{1}{2^2})+( \dfrac{2}{2^3})+( \dfrac{3}{2^4})+( \dfrac{4}{2^5})...~~(2) ~ S 1 2 = ( 1 2 1 ) + ( 1 2 2 ) + ( 1 2 3 ) + ( 1 2 4 ) . . . ( 1 ) ( 2 ) G P ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\frac{S_1}{2}=( \dfrac{1}{2^1})+( \dfrac{1}{2^2})+( \dfrac{1}{2^3})+( \dfrac{1}{2^4})...~~(1)-(2)~~\color{#D61F06}{{GP}} ~ S 1 = 2 {\boxed{S_1=2}} n = 1 ( n 3 n ) = S 2 = ( 1 3 1 ) + ( 2 3 2 ) + ( 3 3 3 ) + ( 4 3 4 ) . . . ( 3 ) \sum^{\infty}_{n=1}(\frac{n}{3^n})=S_2=(\frac{1}{3^1})+(\frac{2}{3^2})+(\frac{3}{3^3})+(\frac{4}{3^4})...~~(3) S 2 3 = ( 1 3 2 ) + ( 2 3 3 ) + ( 3 3 4 ) + ( 4 3 5 ) . . . ( 4 ) ~~~~~~~~~~~~~~~~~~~\frac{S_2}{3}=(\frac{1}{3^2})+(\frac{2}{3^3})+(\frac{3}{3^4})+(\frac{4}{3^5})...~~(4) 2 S 2 3 = ( 1 3 1 ) + ( 1 3 2 ) + ( 1 3 3 ) + ( 1 3 4 ) . . . ( 3 ) ( 4 ) G P ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\frac{2S_2}{3}=(\frac{1}{3^1})+(\frac{1}{3^2})+(\frac{1}{3^3})+(\frac{1}{3^4})...~~~(3)-(4)~~\color{#20A900}{{GP}} S 2 = 3 4 {\boxed{S_2=\frac{3}{4}}} 1 2 [ n = 1 ( n 2 n ) + ( n = 1 n 3 n ) ] = 1 2 [ S 1 + S 2 ] = 1 2 × [ 11 4 ] = 11 8 = A B \frac{1}{2}[\sum^{\infty}_{n=1}( \dfrac{n}{2^n}) +(\sum^{\infty}_{n=1}\dfrac{n}{3^n})]=\frac{1}{2}[S_1+S_2]=\frac{1}{2}\times[\frac{11}{4}]=\frac{11}{8}=\frac{A}{B} A + B = 19 \large\color{#3D99F6}{\boxed{A+B=19}}

Nice solution !! But it is a bit dark image.

Akshat Sharda - 5 years, 4 months ago
Rishabh Jain
Jan 18, 2016

Desired terms can be separated (To form AGP’s) \small{\color{#624F41}{\text{(To form AGP's)}}} as 1 2 ( ( 1 ) 1 2 + ( 2 ) ( 1 2 2 ) + ( 3 ) ( 1 2 3 ) + \color{#D61F06}{\dfrac{1}{2}( (1)\dfrac{1}{2} +( 2)( \dfrac{1}{2^2})+(3 )( \dfrac{1}{2^3})+ }\ldots + 1 2 ( ( 1 ) 1 3 + ( 2 ) ( 1 3 2 ) + ( 3 ) ( 1 3 3 ) + \color{forestgreen}{+\dfrac{1}{2}( (1)\dfrac{1}{3} +( 2)( \dfrac{1}{3^2})+(3 )( \dfrac{1}{3^3})+} \ldots For r e d \color{#D61F06}{red} series (S) S = 1 2 ( ( 1 ) 1 2 + ( 2 ) ( 1 2 2 ) + ( 3 ) ( 1 2 3 ) + S=\dfrac{1}{2}( (1)\dfrac{1}{2} +( 2)( \dfrac{1}{2^2})+(3 )( \dfrac{1}{2^3})+ \ldots S 2 = 1 2 ( ( 1 ) 1 2 2 + ( 2 ) ( 1 2 3 ) + ( 3 ) ( 1 2 4 ) + \dfrac{S}{2}=\dfrac{1}{2}( (1)\dfrac{1}{2^2} +( 2)( \dfrac{1}{2^3})+(3 )( \dfrac{1}{2^4})+ \ldots Subtracting, we get S 2 = 1 2 ( 1 2 + 1 2 2 + 1 2 3 + \dfrac{S}{2}=\dfrac{1}{2}(\dfrac{1}{2} +\dfrac{1}{2^2}+\dfrac{1}{2^3}+ \ldots \Rightarrow S=1\quad\quad\small{\color{}{\text{(Sum of a Infinite GP)}}} In a similar fashion we can obtain sum of g r e e n \color{forestgreen}{green} AGP and comes out to be 3 8 \frac{3}{8} . Hence required sum= 1 + ( 3 8 ) = 11 8 \color{#D61F06}{1}+\color{forestgreen}{(\frac{3}{8})}=\frac{11}{8} .

Hence, 8 + 11 = 19 \large 8+11=19

Colourfull !!

Akshat Sharda - 5 years, 4 months ago

Log in to reply

Yup.. : ) \Large\color{#3D99F6}{:)}

Rishabh Jain - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...