Sequence and series (5)

Algebra Level pending

k = 1 k 3 + k 2 k = ? \sum_{k=1}^\infty \frac{k^3 + k}{2^k} =\ ?

26 21 28 24

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Karan Chatrath
Apr 23, 2020

Consider the infinite geometric sequence for x < 1 \lvert x\rvert <1 :

1 1 x = k = 0 x k \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k

Differentiating both sides:

1 ( 1 x ) 2 = k = 1 k x k 1 \frac{1}{(1-x)^2} = \sum_{k=1}^{\infty} kx^{k-1} x ( 1 x ) 2 = k = 1 k x k ( 1 ) \implies \frac{x}{(1-x)^2} = \sum_{k=1}^{\infty} kx^{k} \dots \ (1)

Differentiating both sides again gives:

x + 1 ( 1 x ) 3 = k = 1 k 2 x k 1 \frac{x+1}{(1-x)^3} = \sum_{k=1}^{\infty} k^2x^{k-1} x ( x + 1 ) ( 1 x ) 3 = k = 1 k 2 x k \implies \frac{x(x+1)}{(1-x)^3} = \sum_{k=1}^{\infty} k^2x^{k}

Differentiating both sides again gives:

x 2 + 4 x + 1 ( x 1 ) 4 = k = 1 k 3 x k 1 \dfrac{x^2+4x+1}{\left(x-1\right)^4} = \sum_{k=1}^{\infty} k^3x^{k-1} x 3 + 4 x 2 + x ( x 1 ) 4 = k = 1 k 3 x k ( 2 ) \implies \dfrac{x^3+4x^2+x}{\left(x-1\right)^4} = \sum_{k=1}^{\infty} k^3x^{k} \dots \ (2)

Adding (1) and (2):

x ( 1 x ) 2 + x 3 + 4 x 2 + x ( x 1 ) 4 = k = 1 ( k 3 + k ) x k \frac{x}{(1-x)^2} + \dfrac{x^3+4x^2+x}{\left(x-1\right)^4} = \sum_{k=1}^{\infty} \left(k^3+k\right)x^{k}

Putting x = 1 2 x=\frac{1}{2}

0.5 ( 1 0.5 ) 2 + 0. 5 3 + 4 ( 0.5 ) 2 + 0.5 ( 0.5 1 ) 4 = k = 1 k 3 + k 2 k \frac{0.5}{(1-0.5)^2} + \dfrac{0.5^3+4(0.5)^2+0.5}{\left(0.5-1\right)^4} = \sum_{k=1}^{\infty} \frac{k^3+k}{2^k} k = 1 k 3 + k 2 k = 28 \implies \boxed{\sum_{k=1}^{\infty} \frac{k^3+k}{2^k} = 28}

Chew-Seong Cheong
Apr 23, 2020

Consider the following infinite series for x < 1 |x| < 1 :

k = 0 x k = 1 1 x Differentiate both sides w.r.t. x k = 1 k x k 1 = 1 ( 1 x ) 2 Multiply both sides by x k = 1 k x k = x ( 1 x ) 2 Differentiate both sides w.r.t. x k = 1 k 2 x k 1 = 1 + x ( 1 x ) 3 Multiply both sides by x k = 1 k 2 x k = x + x 2 ( 1 x ) 3 Differentiate both sides w.r.t. x k = 1 k 3 x k 1 = 1 + 4 x + x 2 ( 1 x ) 4 Multiply both sides by x k = 1 k 3 x k = x + 4 x 2 + x 3 ( 1 x ) 4 \begin{aligned} \sum_{k=0}^\infty x^k & = \frac 1{1-x} & \small \blue{\text{Differentiate both sides w.r.t. }x} \\ \sum_{k=1}^\infty kx^{k-1} & = \frac 1{(1-x)^2} & \small \blue{\text{Multiply both sides by }x} \\ \sum_{k=1}^\infty kx^k & = \frac x{(1-x)^2} & \small \blue{\text{Differentiate both sides w.r.t. }x} \\ \sum_{k=1}^\infty k^2x^{k-1} & = \frac {1+x}{(1-x)^3} & \small \blue{\text{Multiply both sides by }x} \\ \sum_{k=1}^\infty k^2x^k & = \frac {x+x^2}{(1-x)^3} & \small \blue{\text{Differentiate both sides w.r.t. }x} \\ \sum_{k=1}^\infty k^3x^{k-1} & = \frac {1+4x+x^2}{(1-x)^4} & \small \blue{\text{Multiply both sides by }x} \\ \sum_{k=1}^\infty k^3x^k & = \frac {x+4x^2+x^3}{(1-x)^4} \end{aligned}

Then we have:

k = 1 k 3 x k + k = 1 k x k = x + 4 x 2 + x 3 ( 1 x ) 4 + x ( 1 x ) 2 Putting x = 1 2 k = 1 k 3 + k 2 k = 26 + 2 = 28 \begin{aligned} \sum_{k=1}^\infty k^3x^k + \sum_{k=1}^\infty kx^k & = \frac {x+4x^2+x^3}{(1-x)^4} + \frac x{(1-x)^2} & \small \blue{\text{Putting }x=\frac 12} \\ \implies \sum_{k=1}^\infty \frac {k^3+k}{2^k} & = 26+2 = \boxed{28} \end{aligned}


Alternative method

S 0 = k = 1 1 2 k = 1 2 1 1 2 = 1 S 1 = k = 1 k 2 k = k = 0 k 2 k = k = 0 k + 1 2 k + 1 = 1 2 k = 0 k 2 k + k = 1 1 2 k = S 1 2 + S 0 S 1 2 = 1 S 1 = 2 \begin{aligned} S_0 & = \sum_{k=1}^\infty \frac 1{2^k} = \frac {\frac 12}{1-\frac 12} = 1 \\ S_1 & = \sum_{\blue{k=1}}^\infty \frac k{2^k} = \sum_{\red{k=0}}^\infty \frac k{2^k} = \sum_{\red{k=0}}^\infty \frac {k+1}{2^{k+1}} = \frac 12 \blue{\sum_{\red{k=0}}^\infty \frac k{2^k}} + \sum_{\blue{k=1}}^\infty \frac 1{2^k} = \frac {\blue{S_1}}2 + S_0 \\ \implies \frac {S_1}2 & = 1 \\ S_1 & = 2 \end{aligned}

Similarly

S 2 = k = 1 k 2 2 k = k = 0 k 2 2 k = k = 0 ( k + 1 ) 2 2 k + 1 = 1 2 k = 0 k 2 + 2 k + 1 2 k = S 2 2 + S 1 + S 0 = S 2 2 + 2 + 1 = 2 ( 2 + 1 ) = 6 \begin{aligned} S_2 & = \sum_{\blue{k=1}}^\infty \frac {k^2}{2^k} = \sum_{\red{k=0}}^\infty \frac {k^2}{2^k} = \sum_{\red{k=0}}^\infty \frac {(k+1)^2}{2^{k+1}} = \frac 12 \sum_{\red{k=0}}^\infty \frac {k^2+2k + 1}{2^k} \\ & = \frac {S_2}2 + S_1 + S_0 = \frac {S_2}2 + 2 + 1 \\ & = 2(2+1) = 6 \end{aligned}

And

S 3 = k = 1 k 3 2 k = k = 0 k 3 2 k = k = 0 ( k + 1 ) 3 2 k + 1 = 1 2 k = 0 k 3 + 3 k 2 + 3 k + 1 2 k = S 3 2 + 3 S 2 2 + 3 S 1 2 + S 0 = 2 ( 9 + 3 + 1 ) = 26 \begin{aligned} S_3 & = \sum_{\blue{k=1}}^\infty \frac {k^3}{2^k} = \sum_{\red{k=0}}^\infty \frac {k^3}{2^k} = \sum_{\red{k=0}}^\infty \frac {(k+1)^3}{2^{k+1}} = \frac 12 \sum_{\red{k=0}}^\infty \frac {k^3+3k^2+3k + 1}{2^k} \\ & = \frac {S_3}2 + \frac {3S_2}2 + \frac {3S_1}2 + S_0 \\ & = 2\left(9+3+1\right) = 26 \end{aligned}

Therefore k = 1 k 3 + k 2 k = S 3 + S 1 = 26 + 2 = 28 \displaystyle \sum_{k=1}^\infty \frac {k^3+k}{2^k} = S_3 + S_1 = 26 + 2 = \boxed{28} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...