Sequence and series (11)

Calculus Level 3

If n = 0 ( 34 4 n ) = 2 k \displaystyle \sum_{n=0}^\infty \binom{34}{4n} = 2^k then k = ? k = ?


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Adhiraj Dutta
May 8, 2020

This is NOT my answer, I found it on Quora here and found it interesting and quite Brilliant

Let S = n = 0 ( 34 4 n ) \displaystyle S = \sum_{n=0}^\infty \binom{34}{4n}

Using the property ( n r ) = ( n n r ) \displaystyle \binom{n}{r} = \binom{n}{n-r} we have

2 S = n = 0 [ ( 34 4 n ) + ( 34 4 n r ) ] 2S = \displaystyle \sum_{n=0}^\infty \left[\binom{34}{4n} + \binom{34}{4n-r}\right]

Notice that this sum is [ ( 34 0 ) + ( 34 34 ) ] + [ ( 34 4 ) + ( 34 30 ) ] + [ ( 34 8 ) + ( 34 26 ) ] + \begin{aligned}\left[{34\choose 0}+{34\choose 34}\right]+\left[{34\choose 4}+{34\choose 30}\right]+\left[{34\choose 8}+{34\choose 26}\right]+\ldots\tag*{}\end{aligned}

Notice that as n n gets large, the terms are 0 0 . With a little bit of rearranging: 2 S = n = 0 [ ( 34 4 n ) + ( 34 34 4 n ) ] = n even ( 34 n ) \begin{aligned}2S=\sum_{n=0}^\infty\left[{34 \choose 4n}+{34 \choose 34-4n}\right]&=\sum_{n\text{ even}}^\infty{34\choose n}\tag*{}\end{aligned}

Now, using Pascal's identity, ( n r ) = ( n 1 r 1 ) + ( n 1 r ) {n\choose r} = {n-1 \choose r-1} + {n-1\choose r} , we have that

2 S = n even ( 34 n ) = r = 0 ( 33 r ) = 2 33 \begin{aligned}2S=\sum_{n\text{ even}}^\infty{34\choose n}&=\sum_{r=0}^\infty{33\choose r}=2^{33}\tag*{}\end{aligned} Thus, S = n = 0 ( 34 4 n ) = 2 32 \begin{aligned} S = \sum_{n=0}^\infty{34\choose 4n}=2^{32}\tag*{}\end{aligned}

First note that ( n m ) = 0 \dbinom nm = 0 for m > n m>n . Therefore n = 0 ( 34 n ) = n = 0 8 ( 34 n ) \displaystyle \sum_{n=0}^\infty \binom {34}n = \sum_{n=0}^8 \binom {34}n By binomial theorem , we have:

( 1 + x ) 34 = ( 34 0 ) + ( 34 1 ) x + ( 34 2 ) x 2 + ( 34 3 ) x 3 + ( 34 4 ) x 4 + + ( 34 32 ) x 32 + ( 34 33 ) x 33 + ( 34 34 ) x 34 ( 1 + 1 ) 34 = ( 34 0 ) + ( 34 1 ) + ( 34 2 ) + ( 34 3 ) + ( 34 4 ) + + ( 34 32 ) + ( 34 33 ) + ( 34 34 ) ( 1 + i ) 34 = ( 34 0 ) + ( 34 1 ) i ( 34 2 ) ( 34 3 ) i + ( 34 4 ) + + ( 34 32 ) + ( 34 33 ) i ( 34 34 ) ( 1 1 ) 34 = ( 34 0 ) ( 34 1 ) + ( 34 2 ) ( 34 3 ) + ( 34 4 ) + ( 34 32 ) ( 34 33 ) + ( 34 34 ) ( 1 i ) 34 = ( 34 0 ) ( 34 1 ) i ( 34 2 ) + ( 34 3 ) i + ( 34 4 ) + + ( 34 32 ) ( 34 33 ) i ( 34 34 ) \small \begin{aligned} (1+x)^{34} & = \binom {34}0+ \binom {34}1 x + \binom {34}2 x^2 + \binom {34}3 x^3 + \binom {34}4 x^4 + \cdots + \binom {34}{32} x^{32} + \binom {34}{33} x^{33} + \binom {34}{34} x^{34} \\ (1+1)^{34} & = \binom {34}0 + \binom {34}1 + \binom {34}2 + \binom {34}3 + \binom {34}4 + \cdots + \binom {34}{32} + \binom {34}{33} + \binom {34}{34} \\ (1+i)^{34} & = \binom {34}0 + \binom {34}1 i- \binom {34}2 - \binom {34}3i + \binom {34}4 + \cdots + \binom {34}{32} + \binom {34}{33}i - \binom {34}{34} \\ (1-1)^{34} & = \binom {34}0 - \binom {34}1 + \binom {34}2 - \binom {34}3 + \binom {34}4 - \cdots + \binom {34}{32} - \binom {34}{33} + \binom {34}{34} \\ (1-i)^{34} & = \binom {34}0 - \binom {34}1 i - \binom {34}2 + \binom {34}3i + \binom {34}4 + \cdots + \binom {34}{32} - \binom {34}{33}i - \binom {34}{34} \end{aligned}

( 1 + 1 ) 34 + ( 1 + i ) 34 + ( 1 1 ) 34 + ( 1 i ) 34 = 4 ( ( 34 0 ) + ( 34 4 ) + ( 34 8 ) + + ( 34 32 ) ) \small \begin{aligned} \implies (1+1)^{34} +(1+i)^{34}+(1-1)^{34}+(1-i)^{34} & = 4\left(\binom {34}0 + \binom {34}4 + \binom {34}8 + \cdots + \binom {34}{32} \right) \end{aligned}

n = 0 = ( 1 + 1 ) 34 + ( 1 + i ) 34 + ( 1 1 ) 34 + ( 1 i ) 34 4 = 2 34 + ( 2 i ) 17 + 0 + ( 2 i ) 17 4 = 2 32 \begin{aligned} \implies \sum_{n=0}^\infty & = \frac {(1+1)^{34} +(1+i)^{34}+(1-1)^{34}+(1-i)^{34}}4 \\ & = \frac {2^{34} +(2i)^{17}+0+(-2i)^{17}}4 \\ & = 2^{32} \end{aligned}

Therefore, k = 32 k=\boxed {32} .

Typo in the final answer!

Adhiraj Dutta - 1 year, 1 month ago

Log in to reply

Thanks, I wonder why I made the mistake.

Chew-Seong Cheong - 1 year, 1 month ago

Log in to reply

How are you sir?

Adhiraj Dutta - 1 year, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...