Sequence and Series 2

Calculus Level 3

B = 1 2 2 ! + 2 2 3 ! + 3 2 4 ! + = n = 1 n 2 ( n + 1 ) ! \mathfrak{B}=\dfrac{1^2}{2!}+\dfrac{2^2}{3!}+\dfrac{3^2}{4!}+\ldots = \displaystyle \sum^{\infty}_{n=1}\dfrac{n^2}{(n+1)!}

Find B \lceil \mathfrak{B} \rceil .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Guilherme Niedu
Jul 7, 2017

e x = k = 0 x k k ! \large \displaystyle e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}

Dividing by x x on both sides:

e x x = k = 0 x k 1 k ! \large \displaystyle \frac{e^x}{x} = \sum_{k=0}^{\infty} \frac{x^{k-1}}{k!}

Differentiating with respect to x x on both sides:

e x ( x 1 ) x 2 = k = 0 ( k 1 ) x k 2 k ! \large \displaystyle \frac{e^x(x-1)}{x^2} = \sum_{k=0}^{\infty} \frac{(k-1)x^{k-2}}{k!}

Multiplying by x x on both sides:

e x e x x = k = 0 ( k 1 ) x k 1 k ! \large \displaystyle e^x - \frac{e^x}{x} = \sum_{k=0}^{\infty} \frac{(k-1)x^{k-1}}{k!}

Differentiating with respect to x x on both sides:

e x e x ( x 1 ) x 2 = k = 0 ( k 1 ) 2 x k 2 k ! \large \displaystyle e^x - \frac{e^x(x-1)}{x^2} = \sum_{k=0}^{\infty} \frac{(k-1)^2 x^{k-2}}{k!}

Making x = 1 x=1 :

e = k = 0 ( k 1 ) 2 k ! \large \displaystyle e = \sum_{k=0}^{\infty} \frac{(k-1)^2}{k!}

Defining k = n + 1 k = n+1 :

e = n = 1 n 2 ( n + 1 ) ! \large \displaystyle e = \sum_{n=-1}^{\infty} \frac{n^2}{(n+1)!}

e = ( 1 ) 2 0 ! + 0 2 1 ! + n = 1 n 2 ( n + 1 ) ! \large \displaystyle e = \frac{(-1)^2}{0!} + \frac{0^2}{1!} + \sum_{n=1}^{\infty} \frac{n^2}{(n+1)!}

n = 1 n 2 ( n + 1 ) ! = e 1 \large \displaystyle \sum_{n=1}^{\infty} \frac{n^2}{(n+1)!} = e-1

B = e 1 \large \displaystyle \color{#20A900} \boxed{ \mathfrak{B} = e-1 }

Thus:

B = 2 \large \displaystyle \color{#3D99F6} \boxed{\lceil \mathfrak{B} \rceil = 2 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...