Sequence and Series

Algebra Level 4

If a = r = 1 1 r 2 \displaystyle a=\sum_{r=1}^\infty \dfrac1{r^2} and b = r = 1 1 ( 2 r 1 ) 2 \displaystyle b=\sum_{r=1}^\infty \dfrac1{(2r-1)^2} , find 3 a b \dfrac{3a}{b} .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

a = r = 1 1 r 2 = ζ ( 2 ) = π 2 6 ζ ( n ) is the Riemann zeta function. b = r = 1 1 ( 2 r 1 ) 2 = r = 1 1 r 2 r = 1 1 ( 2 r ) 2 = r = 1 1 r 2 1 4 r = 1 1 r 2 = 3 4 r = 1 1 r 2 = 3 4 ζ ( 2 ) = π 2 8 \begin{aligned} a & = \sum_{r=1}^\infty \frac1{r^2} = \color{#3D99F6}{\zeta (2)} = \frac{\pi^2}6\quad \quad \small \color{#3D99F6}{\zeta (n) \text{ is the Riemann zeta function.}} \\ b & = \sum_{r=1}^\infty \frac1{(2r-1)^2} \\ & = \sum_{r=1}^\infty \frac1{r^2} - \sum_{r=1}^\infty \frac1{(2r)^2} \\ & = \sum_{r=1}^\infty \frac1{r^2} - \frac14 \sum_{r=1}^\infty \frac1{r^2} \\ & = \frac34 \sum_{r=1}^\infty \frac1{r^2} = \frac34 \zeta(2) = \frac{\pi^2}8 \end{aligned}

3 a b = 4 \implies \dfrac{3a}b = \boxed{4}

Or maybe write a 'a' as:

a = ( 1 1 2 + 1 3 2 + 1 5 2 ) b + ( 1 2 2 + 1 4 2 + 1 6 2 + ) 1 2 2 ( a ) a=\underbrace{\left(\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}\cdots\right)}_{\large b}+\underbrace{\left(\dfrac1{2^2}+\dfrac{1}{4^2}+\dfrac1{6^2}+\cdots\right)}_{\dfrac{1}{2^2}(\large a)} 3 a / 4 = b 3 a / b = 4 \implies 3a/4=b\implies 3a/b=4

BTW (+1)..

Rishabh Jain - 5 years ago

Log in to reply

Good solution. Upvoted.

Chew-Seong Cheong - 5 years ago

@Dharani Chinta , we have been keying in your problems into LaTex for you. Please learn to key in your problems in LaTex. Use can use Toggle LaTex at the top left pull-down menu to see the LaTex. You can also place your mouse cursor on top the formulas to check the codes. Thanks.

Chew-Seong Cheong - 5 years ago

a = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + 1 5 2 + . . . b = 1 1 2 + 1 3 2 + 1 5 2 + . . . a b = 1 2 2 + 1 4 2 + 1 6 2 + . . . = 1 4 ( 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + 1 5 2 + . . . ) = 1 4 a 3 4 a = b a = 4 3 b 3 a b = 4 a=\frac{1}{1}^2+\frac{1}{2}^2+\frac{1}{3}^2+\frac{1}{4}^2+\frac{1}{5}^2+...\\b=\frac{1}{1}^2+\frac{1}{3}^2+\frac{1}{5}^2+...\\a-b=\frac{1}{2}^2+\frac{1}{4}^2+\frac{1}{6}^2+...=\frac{1}{4}\left(\frac{1}{1}^2+\frac{1}{2}^2+\frac{1}{3}^2+\frac{1}{4}^2+\frac{1}{5}^2+...\right)=\frac{1}{4}a\\\frac{3}{4}a=b\Rightarrow a=\frac{4}{3}b\Rightarrow \frac{3a}{b}=4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...