Sequence of roots

Level pending

Assume that x n = 3 + n + 3 n x_n=\sqrt 3+\sqrt n +\sqrt {3n} and S n = ( x n 3 ) ( x n n ) x n + 1 S_n=\frac {(x_n-\sqrt 3)(x_n-\sqrt n)} {x_n+1} , find the value of i = 1 100 S i 2 \sum_{i=1}^{100}S_{i^2}

5050 + 3 5050+\sqrt 3 100 3 100\sqrt 3 15150 15150 5050 3 5050\sqrt 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Feb 14, 2021

Let us take S i 2 = ( x i 2 3 ) ( x i 2 i 2 ) x i 2 + 1 S_{i^2} = \frac{(x_{i^2}-\sqrt{3})(x_{i^2}-\sqrt{i^2})}{x_{i^2}+1} , where x i 2 = 3 + i 2 + 3 i 2 = 3 + ( 1 + 3 ) i x_{i^2} = \sqrt{3} + \sqrt{i^2} + \sqrt{3i^2} = \sqrt{3} + (1+\sqrt{3})i . This now yields:

S i 2 = [ ( 1 + 3 ) i + 3 ] 2 ( i + 3 ) [ ( 1 + 3 ) i + 3 ] + 3 i 1 + [ ( 1 + 3 ) i + 3 ] = 3 + 3 3 + 1 i = 3 + 3 3 + 1 3 1 3 1 i = 3 3 + 2 3 3 1 i = 3 i S_{i^2} = \frac{[(1+\sqrt{3})i + \sqrt{3}]^2 - (i+\sqrt{3})[(1+\sqrt{3})i+\sqrt{3}] + \sqrt{3} i}{1 + [(1+\sqrt{3})i + \sqrt{3}]} = \frac{\sqrt{3}+3}{\sqrt{3}+1} \cdot i = \frac{\sqrt{3}+3}{\sqrt{3}+1} \cdot \frac{\sqrt{3}-1}{\sqrt{3}-1} \cdot i = \frac{3-3 + 2\sqrt{3}}{3-1} \cdot i = \sqrt{3}i

and finally the summation:

Σ i = 1 100 3 i = 3 ( 100 ) ( 101 ) 2 = 5050 3 . \Sigma_{i=1}^{100} \sqrt{3} i = \sqrt{3} \cdot \frac{(100)(101)}{2} = \boxed{5050\sqrt{3}}.

why isnt the answer matching

Baibhab Chakraborty - 3 months, 1 week ago

Log in to reply

Seems like the admin had modified the question, it is not the actual answer too.

hello its me - 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...