Sequence Problem

Calculus Level 2

Let a recurrent sequence be defined as:

u 0 : = 2 u n + 1 : = 1 2 u n + 1 2 , n N \begin{aligned} u_0 & := 2 \\ u_{n+1} & := \dfrac 12 u_n + \dfrac 12, & n \in \mathbb N \end{aligned}

Find lim n u n \displaystyle \lim_{n \to \infty} u_n .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 18, 2016

Relevant wiki: Linear Recurrence Relations - Calculating Initial Terms

u n + 1 = 1 2 u n + 1 2 u n + 1 1 = 1 2 u n 1 2 1 2 + 1 2 ( u n + 1 1 ) = 1 2 ( u n 1 ) Let t n = u n 1 t n + 1 = 1 2 t n Characteristic equation r = 1 2 t n = a 2 n where a is a constant u n 1 = a 2 n u n = a 2 n + 1 u 0 = 2 a 2 0 + 1 = 2 a = 1 u n = 1 2 n + 1 lim n u n = 0 + 1 = 1 \begin{aligned} u_{n+1} & = \frac 12 u_n + \frac 12 \\ u_{n+1} \color{#3D99F6}{-1} & = \frac 12 u_n \color{#3D99F6}{-\frac 12 - \frac 12} + \frac 12 \\ \left( \color{#3D99F6}{u_{n+1} -1} \right) & = \frac 12 \left(\color{#3D99F6}{u_{n} -1} \right) & \small \color{#3D99F6}{\text{Let }t_n = u_n -1} \\ \color{#3D99F6}{t_{n+1}} & = \frac 12 \color{#3D99F6}{t_{n}} & \small \color{#3D99F6}{\text{Characteristic equation }r=\frac 12} \\ \implies t_n & = \frac {\color{#3D99F6}{a}}{2^n} & \small \color{#3D99F6}{\text{where } a \text{ is a constant}} \\ u_n - 1& = \frac a{2^n} \\ u_n & = \frac a{2^n} + 1 \\ u_0 & = 2 \\ \implies \frac a{2^0} + 1 & = 2 \\ \implies a & = 1 \\ \implies u_n & = \frac 1{2^n} + 1 \\ \implies \lim_{n \to \infty} u_n & = 0 + 1 = \boxed{1} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...