Sequence using BT

Algebra Level pending

1 19 ! + 1 3 ! 17 ! + 1 5 ! 15 ! + \frac 1{19!} + \frac 1{3!17!} + \frac 1{5!15!} + \dots

Find the sum of the first 10 10 terms of the series above.

2 19 20 ! \frac{2^{19}}{20!} 2 19 10 ! \frac{2^{19}}{10!} 2 20 20 ! \frac{2^{20}}{20!} 2 10 20 ! \frac{2^{10}}{20!}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Apr 23, 2020

By binomial theorem , we have

( 1 + x ) 20 = x 20 + 20 ! 1 ! 19 ! x 19 + 20 ! 2 ! 18 ! x 18 + + 20 ! 18 ! 2 ! x 2 + 20 ! 19 ! 1 ! x + 1 ( 1 x ) 20 = x 20 20 ! 1 ! 19 ! x 19 + 20 ! 2 ! 18 ! x 18 + 20 ! 18 ! 2 ! x 2 20 ! 19 ! 1 ! x + 1 ( 1 + x ) 20 ( 1 x ) 20 = 2 ( 20 ! 1 ! 19 ! x 19 + 20 ! 3 ! 17 ! x 17 + + 20 ! 17 ! 2 ! x 3 + 20 ! 19 ! 1 ! x ) \begin{aligned} (1+x)^{20} & = x^{20} + \frac {20!}{1!19!}x^{19} + \frac {20!}{2!18!}x^{18} + \cdots + \frac {20!}{18!2!}x^2 + \frac {20!}{19!1!}x + 1 \\ (1-x)^{20} & = x^{20} - \frac {20!}{1!19!}x^{19} + \frac {20!}{2!18!}x^{18} - \cdots + \frac {20!}{18!2!}x^2 - \frac {20!}{19!1!}x + 1 \\ (1+x)^{20} - (1-x)^{20} & = 2\left(\frac {20!}{1!19!}x^{19} + \frac {20!}{3!17!}x^{17} + \cdots + \frac {20!}{17!2!}x^3 + \frac {20!}{19!1!}x \right) \end{aligned}

Now putting x = 1 x=1 and divide both sides by 2 20 ! 2\cdot 20! :

1 1 ! 19 ! + 1 3 ! 17 ! + 1 5 ! 15 ! + + 1 19 ! 1 ! = 2 19 20 ! \frac 1{1!19!} + \frac 1{3!17!} + \frac 1{5!15!} + \cdots + \frac 1{19!1!} = \boxed{\frac {2^{19}}{20!}}

Richard Desper
Apr 22, 2020

If we take the expression given and multiply by 20 ! 20! , we get k = 1 10 ( 20 2 k 1 ) \sum_{k=1}^{10} \binom{20}{2k-1} ,

i.e. you are getting the total number of subsets of a set with twenty elements that have an odd number of elements.

Now 2 20 2^{20} is the total number of subsets of a set with 20 20 elements, and exactly half of them have an odd number of elements. (An obvious fact for n n odd, and a proof by induction is pretty straightforward.)

So 2 19 2^{19} is the total number of subsets of a set with 20 20 that themselves have an odd number of elements. I.e.,

2 19 = k = 1 10 ( 20 2 k 1 ) 2^{19} = \sum_{k=1}^{10} \binom{20}{2k-1} . Divide by 20 ! 20! to get the identity above.

Great explanation! I posted a bit mechanical one, but your one explains just about everything.

Adhiraj Dutta - 1 year, 1 month ago
Adhiraj Dutta
Apr 22, 2020

S = 1 20 ! { 20 ! 1 ! 19 ! + 20 ! 3 ! 17 ! + 20 ! 5 ! 15 ! + + 20 ! 19 ! 1 ! } = 1 20 ! { ( 20 1 ) + ( 20 3 ) + ( 20 5 ) + + ( 20 19 ) } = 1 20 ! ( 2 20 1 ) = 2 19 20 ! \begin{aligned} S &= \dfrac{1}{20!} \{\dfrac{20!}{1!19!} + \dfrac{20!}{3!17!} + \dfrac{20!}{5!15!} + \dots + \dfrac{20!}{19!1!}\} \\ &= \dfrac{1}{20!} \{\dbinom{20}{1} + \dbinom{20}{3} + \dbinom{20}{5} + \dots + \dbinom{20}{19}\} \\ &= \dfrac{1}{20!} (2^{20 - 1}) \\ &= \boxed{\dfrac{2^{19}}{20!}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...