Sequence Within A Sequence 3

Consider a sequence of numbers T 1 , T 2 , T 3 , , T n T_1, T_2, T_3, \ldots, T_n ( n Z + n\in \mathbb{Z}^+ ) that satisfies the following: T 1 = 1156 , d 1 = 1153 T_1=1156, d_1=1153 T 2 = T 1 + d 1 T 3 = T 2 + d 2 T n = T n 1 + d n 1 T_2=T_1+d_1 \\ T_3=T_2+d_2 \\ \vdots \\ T_n=T_{n-1}+d_{n-1} d k = d k 1 3 , k = 2 , 3 , 4 , , n 1 d_k=d_{k-1}-3,~~~k=2, 3, 4, \ldots, n-1

Denote, S a = T 1 + T 2 + + T a S_a=T_1+T_2+\ldots+T_a , find the value of n n if S n = 0 S_n=0 .


<<Sequence Within A Sequence 2

Sequence Within A Sequence 4>>


This is one part of 1+1 is not = to 3 .


The answer is 1157.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 15, 2016

We claim that T n = 1 2 n ( 2315 3 n ) T_n = \frac{1}{2}n(2315-3n) and prove it by induction.

  1. For n = 1 n=1 , T 1 = 1 2 ( 1 ) ( 2315 3 ( 1 ) ) = 1156 T_1 = \frac{1}{2}(1)(2315-3(1)) = 1156 as given. The claim is true for n = 1 n=1 .
  2. Assume that the claim is true for n n , then

T n + 1 = T n + d n We note that d n = d 1 3 ( n 1 ) = 1156 3 n = n ( 2315 3 n ) 2 + 1156 3 n = 2315 n 3 n 2 + 2312 6 n 2 = 2312 + 2309 n 3 n 2 2 = ( n + 1 ) ( 2315 3 ( n + 1 ) ) 2 \begin{aligned} \quad \quad T_{\color{#D61F06}{n+1}} & = T_n + \color{#3D99F6}{d_n} \quad \quad \quad \quad \quad \quad \quad \quad \quad \small \color{#3D99F6}{\text{We note that }d_n = d_1 - 3(n-1) = 1156-3n} \\ & = \frac{n(2315-3n)}{2} + \color{#3D99F6}{1156-3n} \\ & = \frac{2315n-3n^2 + 2312-6n}{2} \\ & = \frac{2312+2309n-3n^2}{2} \\ & = \frac{(\color{#D61F06}{n+1})(2315-3(\color{#D61F06}{n+1}))}{2} \end{aligned}

\quad The claim is also true for n + 1 n+1 and therefore it is true for all n 1 n \ge 1 .

Now, we have:

S n = 0 k = 1 n T k = 0 k = 1 n 2315 k 3 k 2 2 = 0 2315 n ( n + 1 ) 4 3 n ( n + 1 ) ( 2 n + 1 ) 12 = 0 2315 n ( n + 1 ) = n ( n + 1 ) ( 2 n + 1 ) 2 n + 1 = 2315 n = 1157 \begin{aligned} S_n & = 0 \\ \sum_{k=1}^n T_k & = 0 \\ \sum_{k=1}^n \frac{2315k-3k^2}{2} & = 0 \\ \frac{2315n(n+1)}{4} - \frac{3n(n+1)(2n+1)}{12} & = 0 \\ \Rightarrow 2315n(n+1) & = n(n+1)(2n+1) \\ 2n + 1 & = 2315 \\ \Rightarrow n & = \boxed{1157} \end{aligned}

Kenneth Tan
Mar 15, 2016

From Sequence Within A Sequence 2 , we know that S n = n T 1 + n ( n 1 ) [ 3 d 1 + ( n 2 ) D ] 6 S_n=nT_1+\frac {n (n-1)[3d_1+(n-2)D]}{6} Plugging in T 1 = 1156 T_1=1156 , d 1 = 1153 d_1=1153 , D = 3 D=-3 , S n = 0 S_n=0 , we have 0 = 1156 n + n ( n 1 ) [ 3 × 1153 3 ( n 2 ) ] 6 0=1156n+\frac {n (n-1)[3×1153-3 (n-2)]}{6} ( n 1 ) ( n 1155 ) 2 1156 = 0 \frac {(n-1)(n-1155)}{2}-1156=0 n 2 1156 n + 1155 2 1156 = 0 \frac {n^2-1156n+1155}{2}-1156=0 n 2 1156 n 1157 = ( n + 1 ) ( n 1157 ) = 0 n^2-1156n-1157=(n+1 )(n-1157)=0 Since n > 0 n>0 , thus n = 1157 n=1157 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...