Sequence Within A Sequence 5

Algebra Level 4

Consider a sequence of numbers T 1 , T 2 , T 3 , , T n T_1, T_2, T_3, \ldots, T_n ( n Z + n\in \mathbb{Z}^+ ) that satisfies the following: T 1 = 5 , d 1 = 1 T_1=5, d_1=1 T 2 = T 1 + d 1 T 3 = T 2 + d 2 T n = T n 1 + d n 1 T_2=T_1+d_1 \\ T_3=T_2+d_2 \\ \vdots \\ T_n=T_{n-1}+d_{n-1} d k = 2 d k 1 , k = 2 , 3 , 4 , , n 1 d_k=2d_{k-1},~~~k=2, 3, 4, \ldots, n-1

Denote S a = T 1 + T 2 + + T a S_a=T_1+T_2+\ldots+T_a , find S 16 S_{16} .


<<Sequence Within A Sequence 4


This is one part of 1+1 is not = to 3 .


The answer is 65599.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kenneth Tan
Mar 17, 2016

We have T 1 = T 1 T 2 = T 1 + d 1 T 3 = T 1 + d 1 + d 2 T n = T 1 + d 1 + d 2 + + d n 1 \begin{aligned} T_1&=T_1 \\ T_2&=T_1+d_1 \\ T_3&=T_1+d_1+d_2 \\ &\vdots \\ T_n&=T_1+d_1+d_2+\ldots+d_{n-1} \end{aligned} Add all these equations together, we have S n = n T 1 + i = 1 n 1 j = 1 i d j S_n=nT_1+\displaystyle \sum_{i=1}^{n-1}{\sum_{j=1}^i {d_j}} From the question we know that d 1 , d 2 , , d n 1 d_1, d_2, \ldots, d_{n-1} is a G.P. (Geometric Progression), suppose d k d k 1 = R , k = 2 , 3 , , n 1 \frac{d_k}{d_{k-1}}=R, ~~k=2,3,\ldots,n-1 , applying the sum of G.P. formula, we have j = 1 i d j = d 1 ( R i 1 ) R 1 \sum_{j=1}^i {d_j}=\frac{d_1(R^i-1)}{R-1} Hence, i = 1 n 1 j = 1 i d j = i = 1 n 1 d 1 ( R i 1 ) R 1 = d 1 R 1 i = 1 n 1 ( R i 1 ) = d 1 R 1 [ R ( R n 1 1 ) R 1 n + 1 ] = d 1 R 1 ( R n 1 R 1 n ) \begin{aligned} \sum_{i=1}^{n-1}{\sum_{j=1}^i {d_j}}&=\sum_{i=1}^{n-1}{\frac{d_1(R^i-1)}{R-1}} \\ &=\frac {d_1}{R-1}\sum_{i=1}^{n-1}{(R^i-1)} \\ &=\frac{d_1}{R-1}\left [\frac {R(R^{n-1}-1)}{R-1}-n+1\right] \\ &=\frac{d_1}{R-1}\left (\frac {R^n-1}{R-1}-n\right) \\ \end{aligned} S n = n T 1 + d 1 R 1 ( R n 1 R 1 n ) \therefore S_n=nT_1+\frac{d_1}{R-1}\left (\frac {R^n-1}{R-1}-n\right) Now, substitute n = 16 n=16 , T 1 = 5 T_1=5 , d 1 = 1 d_1=1 , R = 2 R=2 , we could get S 16 = 65599 S_{16}=65599 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...