Sequence Within A Sequence

Consider a sequence of numbers T 1 , T 2 , T 3 , , T n T_1, T_2, T_3, \ldots, T_n ( n Z + n\in \mathbb{Z}^+ ) that satisfies the following: T 1 = 5 , d 1 = 3 T_1=5, d_1=3 T 2 = T 1 + d 1 T 3 = T 2 + d 2 T n = T n 1 + d n 1 T_2=T_1+d_1 \\ T_3=T_2+d_2 \\ \vdots \\ T_n=T_{n-1}+d_{n-1} d k = d k 1 + 1 , k = 2 , 3 , 4 , , n 1 d_k=d_{k-1}+1,~~~k=2, 3, 4, \ldots, n-1

Find T 1153 T_{1153} .


Sequence Within A Sequence 2>>


This is one part of 1+1 is not = to 3 .


The answer is 666437.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kenneth Tan
Mar 15, 2016

We have T 2 = T 1 + d 1 T 3 = T 2 + d 2 T n = T n 1 + d n 1 T_2=T_1+d_1 \\ T_3=T_2+d_2 \\ \vdots \\ T_n=T_{n-1}+d_{n-1} Add all these equations together, cancelling out all the like terms we get T n = T 1 + d 1 + d 2 + d 3 + + d n 1 T_n=T_1+d_1+d_2+d_3+\ldots+d_{n-1} From the question, we know that d 1 , d 2 , , d n 1 d_1, d_2, \ldots, d_{n-1} is an A.P. (Arithmetic Progression).

Suppose d k d k 1 = D , k = 2 , 3 , , n 1 d_k-d_{k-1}=D,~~k=2, 3, \ldots, n-1 , using the sum of A.P. formula, we now have T n = T 1 + n 1 2 [ 2 d 1 + ( n 2 ) D ] T_n=T_1+\frac{n-1}{2}[2d_1+(n-2)D]

Now, substitute n = 1153 n=1153 , T 1 = 5 T_1=5 , d 1 = 3 d_1=3 , D = 1 D=1 , we could get T 1153 = 666437 T_{1153}=666437 .

Did the same (+1) Nice solution!

Akshat Sharda - 5 years, 3 months ago
Chew-Seong Cheong
Mar 15, 2016

We claim that T n = T 1 + ( n 1 ) d 1 + ( n 1 ) ( n 2 ) 2 = 5 + ( n 1 ) ( n + 4 ) 2 T_n = T_1 + (n-1)d_1 + \dfrac{(n-1)(n-2)}{2} = 5 + \dfrac{(n-1)(n+4)}{2} and then prove it by induction.

  1. For n = 1 n = 1 , T 1 = 5 + ( 1 1 ) ( 1 + 4 ) 2 = 5 T_1 = 5 + \dfrac{(1-1)(1+4)}{2} = 5 as given. The claim is true for n = 1 n=1 .
  2. Assume that the claim is true for n n , then we have:

T n + 1 = T n + d n Note that d n = d 1 + n 1 = n + 2 = 5 + ( n 1 ) ( n + 4 ) 2 + n + 2 = 5 + n 2 + 3 n 4 + 2 n + 4 2 = 5 + n 2 + 5 n 2 = 5 + n ( n + 5 ) 2 = 5 + ( n + 1 1 ) ( n + 1 + 4 ) 2 \begin{aligned} \quad \quad T_{\color{#D61F06}{n+1}} & = T_n + \color{#3D99F6}{d_n} \quad \quad \quad \quad \quad \quad \quad \quad \quad \small \color{#3D99F6}{\text{Note that }d_n = d_1 + n-1 = n + 2} \\ & = 5 + \dfrac{(n-1)(n+4)}{2} + \color{#3D99F6}{n + 2} \\ & = 5 + \dfrac{n^2+3n-4+2n+4}{2} \\ & = 5 + \dfrac{n^2+5n}{2} \\ & = 5 + \dfrac{n(n+5)}{2} \\ & = 5 + \dfrac{(\color{#D61F06}{n+1}-1)(\color{#D61F06}{n+1}+4)}{2} \end{aligned}

\quad The claim is also true for n + 1 n+1 and therefore it is true for all n n .

Therefore, T 1153 = 5 + ( 1153 1 ) ( 1153 + 4 ) 2 = 5 + 576 × 1157 = 666437 T_{1153} = 5 + \dfrac{(1153-1)(1153+4)}{2} = 5 + 576 \times 1157 = \boxed{666437}

Rajen Kapur
Mar 15, 2016

The series 5, 8, 12, 17, 23, . . . expressed as n 2 + 3 n + 6 2 \frac{n^2 + 3n + 6}{2} , gives 666437 at n = 1153.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...