S = 1 × 3 × 7 5 + 3 × 5 × 9 7 + 5 × 7 × 1 1 9 + ⋯
If 4 5 S = n 2 + 1 , where n is a positive integer, find n .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
noob. i didn't understand the step no. 4 from below.
S = 1 × 3 × 7 5 + 3 × 5 × 9 7 + 5 × 7 × 1 1 9 + ⋯ = n = 0 ∑ ∞ ( 2 n + 1 ) ( 2 n + 3 ) ( 2 n + 7 ) 2 n + 5 By partial fractions = n = 0 ∑ ∞ ( 3 ( 2 n + 1 ) 1 − 4 ( 2 n + 3 ) 1 − 1 2 ( 2 n + 7 ) 1 ) = 3 1 n = 0 ∑ ∞ 2 n + 1 1 − 4 1 ( n = 0 ∑ ∞ 2 n + 1 1 − 1 ) − 1 2 1 ( n = 0 ∑ ∞ 2 n + 1 1 − 1 − 3 1 − 5 1 ) = ( 3 1 − 4 1 − 1 2 1 ) n = 0 ∑ ∞ 2 n + 1 1 + 4 1 ( 1 ) + 1 2 1 ( 1 + 3 1 + 5 1 ) = ( 0 ) n = 0 ∑ ∞ 2 n + 1 1 + 4 1 + 1 2 1 ( 1 5 2 3 ) = 4 5 1 7
⟹ 4 5 S = 1 7 = 1 6 + 1 = 4 2 + 1 ⟹ n = 4
Did the exact same
Can you explain how you broke into step 4 of your solution where you have written 1 / 3 ∑ n = 0 ∞ ( 1 / ( 2 n + 1 ) ) − 1 / 4 ( ∑ n = 0 ∞ 1 / ( 2 n + 1 ) − 1 ) − 1 / 1 2 ( ∑ n = 0 ∞ 1 / ( 2 n + 1 ) − 1 − 1 / 3 − 1 / 5 ) , all other steps are understandable.
Log in to reply
n = 0 ∑ ∞ 2 n + 1 1 = 1 / 1 + 1 / 3 + 1 / 5 + 1 / 7 + 1 / 9 + . . . n = 0 ∑ ∞ 2 n + 7 1 = 1 / 7 + 1 / 9 + . . . = n = 0 ∑ ∞ 2 n + 1 1 − 1 − 1 / 3 − 1 / 5 .
How much did you score in this AITS
What is AITS?
Problem Loading...
Note Loading...
Set Loading...
S 4 5 S = 1 × 3 × 7 5 + 3 × 5 × 9 7 + 5 × 7 × 1 1 9 + ⋯ = i = 1 ∑ ∞ ( 2 i − 1 ) ( 2 i + 1 ) ( 2 i + 5 ) 2 i + 3 = i = 1 ∑ ∞ 3 1 ( ( 2 i − 1 ) ( 2 i + 1 ) 2 + ( 2 i + 1 ) ( 2 i + 5 ) 1 ) = 3 1 ( i = 1 ∑ ∞ ( 2 i − 1 ) ( 2 i + 1 ) 2 + i = 1 ∑ ∞ ( 2 i + 1 ) ( 2 i + 5 ) 1 ) = 3 1 [ k → ∞ lim i = 1 ∑ k ( 2 i − 1 1 − 2 i + 1 1 ) + k → ∞ lim i = 1 ∑ k 4 1 ( 2 i + 1 1 − 2 i + 5 1 ) ] = 3 1 [ k → ∞ lim ( 1 − 2 k + 1 1 ) + 4 1 k → ∞ lim ( 3 1 + 5 1 − 2 k + 5 1 ) ] = 3 1 [ 1 + 4 1 ( 1 5 8 ) ] = 3 1 ( 1 5 1 7 ) = 4 5 1 7 = 1 7 = 4 2 + 1
Thus, n = 4 .