What number comes next in the following sequence of positive integers?
1 , 2 , 4 , 8 , 6 1 , 2 3 , 4 6 , 8 2 1 , …
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
2^0= 1 2^1= 2 2^2= 4 2^3= 8 2^4= 16 write as 61 2^5=32 write as 23 2^6= 64 write as 46 2^7= 128 write as 821 2^8= 256 write as 652
just cheers.....................
what I say about this is "A Gangster Series"
that's strange!!!
correct :)
Oh my... How I could not know that?...
This is just a simple pattern of powers of 2, but notice that the digits are reversed. Going along your powers of 2 pattern line, you get:
1 , 2 , 4 , 8 , 1 6 , 3 2 , 6 4 , 1 2 8 , 2 5 6 . . .
Reverse the digits of all numbers now.
1 , 2 , 4 , 8 , 6 1 , 2 3 , 4 6 , 8 2 1 , 6 5 2 . . .
Therefore, by looking at this pattern, we can see that the answer is 6 5 2 . Ans.
The OEIS is a good resource for problems like these.
loooool ........................................
Flip Each number after multiplying by 2 128 * 2 = 256 after flip 652
Digits in the reverse order , multiple of 2
The numbers are powers of 2. As soon the answer reaches a double digit number, the digits reverse. So the next number is 2 8 . Reverse its digits and you get 652. CHEERS!!!:)
Problem Loading...
Note Loading...
Set Loading...
Note that the numbers are the powers of 2 with their digits in the reverse order. Since 8 2 1 flipped around gives 1 2 8 , and 2 × 1 2 8 = 2 5 6 , the desired answer is 6 5 2 .