Fundamental Lines

Find the sum of the numbers between 1 and 81 which are divisible by 4.

840 830 800 810

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

The sum of the numbers between 1 and 81 divisible by 4 can be written \text{The sum of the numbers between 1 and 81 divisible by 4 can be written} in the form of a AP like this : \text{in the form of a AP like this :}

4 , 8 , 12.......76 , 80 4,8,12.......76,80

We can find the number of terms using the following formula, \text{We can find the number of terms using the following formula,}

a n = a + ( n 1 ) × d a_{n} = a+(n-1)\times d

Where a n = 80 , a = 4 and d = 4 \text{Where } a_{n} = 80 , a = 4 \text{ and } d = 4

We get, \text{We get,}

n = 20 n=20

Then we can apply the formula \text{Then we can apply the formula}

S n = n 2 × ( a + l ) S_{n} = \frac{n}{2}\times (a +l)

Where n = 20 , a = 4 and l = 80 \text{Where } n = 20 ,a = 4 \text{ and } l = 80

Now we can sub in the values and get S 20 \text{Now we can sub in the values and get } S_{20}

S 20 = 840 S_{20} = \boxed{840}

Vijay Vaishnav
Jul 12, 2015

4+8+...+80 is an AP with d=4. no.of terms in the series =((80-4)/4)+1=19+1=20 Sum of the series=20(4+80)/2=840

In this case it is just adding the multiples of 4 That is 4,8,12,16......,80 because the question says till 81

=> 4+8+12+.........+80 Take 4 common we get 4(1+2+3+4+......+20) =4 * 20(20+1)/2. Since(1+2+3+......+n)=n(n+1)/2 =4 (20)(21)/2 =4 (10)(21) = 840

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...