Sequences and series (1)

Algebra Level 5

Find the sum of the terms of the Geometric Progression, a + a r + a r 2 + a r 3 + a+ar+ar^2 + ar^3 + \cdots , where a a is the value of x x for which the function 7 + 2 x ln 25 5 x 1 5 2 x 7+2x \ln 25 -5^{x-1} - 5^{2-x} has a greatest value and r r is equal to lim x 0 0 x t 2 d t x 2 tan ( π + x ) \displaystyle\lim_{x\rightarrow 0} \displaystyle\int_{0}^{x} \frac{t^2 dt}{x^2 \tan (π+x)}


For more problems try my new set


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tapas Mazumdar
May 5, 2017

We have

f ( x ) = 7 + 2 x ln ( 25 ) 5 x 1 5 2 x Differentiating w.r.t. x and equating to zero f ( x ) = 2 ln ( 25 ) 5 x 1 ln ( 5 ) + 5 2 x ln ( 5 ) = 0 4 ln ( 5 ) 5 x 1 ln ( 5 ) + 5 2 x ln ( 5 ) = 0 4 5 x 1 + 5 2 x = 0 5 x 1 5 2 x = 4 x = 2 \begin{aligned} f(x) &= 7 + 2x \ln(25) - 5^{x-1} - 5^{2-x} & \small {\color{#3D99F6} \text{Differentiating w.r.t. } x \text{ and equating to zero}} \\ \implies f'(x) &= 2 \ln(25) - 5^{x-1} \ln(5) + 5^{2-x} \ln(5) = 0 \\ &\implies 4 \ln(5) - 5^{x-1} \ln(5) + 5^{2-x} \ln(5) = 0 \\ &\implies 4 - 5^{x-1} + 5^{2-x} =0 \\ &\implies 5^{x-1} - 5^{2-x} = 4 \\ &\implies x = 2 \end{aligned}

Checking the second derivative, we find that

f ( x ) = 5 x 1 ln 2 ( 5 ) 5 2 x ln 2 ( 5 ) f ( 2 ) = 6 ln 2 ( 5 ) < 0 \begin{aligned} & f''(x) = - 5^{x-1} \ln^2 (5) - 5^{2-x} \ln^2 (5) \\ \implies & f''(2) = - 6 \ln^2 (5) < 0 \end{aligned}

Thus x = 2 x=2 is the point of local maxima for f ( x ) f(x) and we have

a = 2 \color{#D61F06} a = 2

Now

lim x 0 0 x t 2 d t x 2 tan ( π + x ) = lim x 0 1 x 2 tan ( π + x ) 0 x t 2 d t = lim x 0 1 x 2 tan ( π + x ) x 3 3 = lim x 0 x 3 tan ( π + x ) 0 0 case, L’Hopital’s Rule applies = lim x 0 1 3 sec 2 ( π + x ) = 1 3 \begin{aligned} \displaystyle \lim_{x \to 0} \int_0^x \dfrac{t^2 \,dt}{x^2 \tan (\pi+x)} &= \lim_{x \to 0} \dfrac{1}{x^2 \tan (\pi+x)} \int_0^x t^2 \,dt \\ &= \displaystyle \lim_{x \to 0} \dfrac{1}{x^2 \tan (\pi+x)} \cdot \dfrac{x^3}{3} \\ &= \displaystyle \lim_{x \to 0} \dfrac{x}{3 \tan (\pi +x)} & \small {\color{#3D99F6} \dfrac 00 \text{ case, L'Hopital's Rule applies}} \\ &= \displaystyle \lim_{x \to 0} \dfrac{1}{3 \sec^2 (\pi +x)} \\ &= \dfrac 13 \end{aligned}

Hence

r = 1 3 \color{#D61F06} r = \dfrac 13

Note that r = 1 3 < 1 |r| = \dfrac 13 < 1 and therefore the sum our infinite geometric progression converges and is equal to

S = a + a r + a r 2 + a r 3 + = a 1 r = 2 1 1 3 = 3 S = a + ar + ar^2 + ar^3 + \cdots = \dfrac{a}{1-r} = \dfrac{2}{1 - \frac 13} = \boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...