Sequences and series (10)

Algebra Level 4

r = 1 117 1 2 r + 1 = a b \large \sum_{r=1}^{117} \dfrac{1}{2 \left \lfloor \sqrt{r} \right \rfloor +1} = \frac ab

If the equation above holds true for positive coprime integers a a and b b , enter a + b + 2 a+b +2 as your answer.

Notation: \left \lfloor \cdot \right \rfloor denotes the floor function .


For more problems try my new set


The answer is 78.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tapas Mazumdar
May 9, 2017

S = r = 1 117 1 2 r + 1 = r = 1 117 0 1 x 2 r d x = 0 1 ( r = 1 117 x 2 r ) d x = 0 1 ( n = 1 9 ( 2 n + 1 ) x 2 n + 18 x 20 ) d x = n = 1 9 0 1 ( 2 n + 1 ) x 2 n d x + 0 1 18 x 20 d x = n = 1 9 ( 1 ) + 18 21 = 9 + 6 7 = 69 7 a + b + 2 = 69 + 7 + 2 = 78 \begin{aligned} \displaystyle S &= \sum_{r=1}^{117} \dfrac{1}{2 \left\lfloor \sqrt{r} \right\rfloor +1} \\ &= \displaystyle \sum_{r=1}^{117} \int_0^1 x^{2 \left\lfloor \sqrt{r} \right\rfloor} \mathrm{d}x \\ &= \displaystyle \int_0^1 \left( \sum_{r=1}^{117} x^{2 \left\lfloor \sqrt{r} \right\rfloor} \right) \mathrm{d}x \\ &= \displaystyle \int_0^1 \left( \sum_{n=1}^9 (2n+1) x^{2n} + 18 \cdot x^{20} \right) \mathrm{d}x \\ &= \displaystyle \sum_{n=1}^9 \int_0^1 (2n+1) x^{2n} \mathrm{d}x + \int_0^1 18 \cdot x^{20} \mathrm{d}x \\ &= \displaystyle \sum_{n=1}^9 (1) + \dfrac{18}{21} \\ &= 9 + \dfrac 67 \\ &= \dfrac{69}{7} \end{aligned} \\ \implies a+b+2 = 69+7+2 = \boxed{78}

How did you convert it into integral?

Sahil Silare - 4 years ago

Log in to reply

Simply by observing

0 1 x n d x = 1 n + 1 \int_0^1 x^n \ \mathrm{d} x = \dfrac{1}{n+1}

we can put n = 2 r n = 2 \left\lfloor r \right\rfloor .

Tapas Mazumdar - 4 years ago

I didnt understand your 4th step. How did the summation limit got changed to 1 to 9.

ritik agrawal - 4 years ago

Log in to reply

Simply observing that if r r lies between two perfect squares k 2 k^2 and ( k + 1 ) 2 (k+1)^2 then

r = k for r [ k 2 , ( k + 1 ) 2 1 ] \left\lfloor \sqrt{r} \right\rfloor = k \quad \text{ for} \ r \in \left[k^2 , (k+1)^2 - 1 \right]

Now between k 2 k^2 and ( k + 1 ) 2 1 (k+1)^2 - 1 , there are a total of 2 k + 1 2k+1 integers. Thus between a perfect square and the preceding integer of the next perfect square we'll get 2 k + 1 2k+1 terms of 2 r = 2 k 2 \left\lfloor \sqrt{r} \right\rfloor = 2k .

Further observe that these intervals are

[ 1 , 3 ] ; [ 4 , 8 ] ; [ 9 , 15 ] ; [ 16 , 24 ] ; [ 25 , 35 ] ; [ 36 , 48 ] ; [ 49 , 63 ] ; [ 64 , 80 ] ; [ 81 , 99 ] [1,3] ; [4,8] ; [9,15] ; [16,24] ; [25,35] ; [36,48] ; [49,63] ; [64,80] ; [81,99]

With each respective interval giving us the value of r \left\lfloor \sqrt{r} \right\rfloor from 1 to 9. The last interval, i.e., from [ 100 , 117 ] [100,117] isn't exactly ending as a preceding digit of the next perfect square (which in this case would be 120), so we can just simply count the number of these which is 18 18 and here r = 10 2 r = 20 \left\lfloor \sqrt{r} \right\rfloor = 10 \implies 2 \left\lfloor \sqrt{r} \right\rfloor =20 .

Tapas Mazumdar - 4 years ago

S = r = 1 117 1 2 r + 1 = 1 3 r = 1 2 + 1 3 + 1 3 2 2 1 2 terms + 1 5 r = 2 2 + 1 5 + . . . + 1 5 3 2 2 2 terms + 1 7 r = 3 2 + 1 7 + . . . + 1 7 4 2 3 2 terms + . . . + 1 21 r = 1 0 2 + 1 21 + . . . + 1 21 = k = 1 9 ( k + 1 ) 2 k 2 2 k + 1 + 18 21 = k = 1 9 2 k + 1 2 k + 1 + 6 7 = k = 1 9 1 + 6 7 = 9 + 6 7 = 69 7 \begin{aligned} S & = \sum_{r=1}^{117} \frac 1{2\left \lfloor \sqrt r \right \rfloor + 1} \\ & = \overbrace{\underbrace{\frac 13}_{r=1^2} + \frac 13 + \frac 13}^{2^2-1^2 \text{ terms}} + \overbrace{\underbrace{\frac 15}_{r=2^2} + \frac 15 + ... + \frac 15}^{3^2-2^2 \text{ terms}} + \overbrace{\underbrace{\frac 17}_{r=3^2} + \frac 17 + ... + \frac 17}^{4^2-3^2 \text{ terms}} + ... + \underbrace{\frac 1{21}}_{r=10^2} + \frac 1{21} + ... + \frac 1{21} \\ & = \sum_{k=1}^{9} \frac {(k+1)^2-k^2}{2k+1} + \frac {18}{21} \\ & = \sum_{k=1}^{9} \frac {2k+1}{2k+1} + \frac 67 \\ & = \sum_{k=1}^{9} 1 + \frac 67 \\ & = 9 + \frac 67 \\ & = \frac {69}7 \end{aligned}

a + b + 2 = 69 + 7 + 2 = 78 \implies a+b+2 = 69+7+2 = \boxed{78}

Guilherme Niedu
May 9, 2017

S = r = 1 117 1 2 r + 1 \large \displaystyle S = \sum_{r=1}^{117} \frac{1}{2 \lfloor \sqrt{r} \rfloor + 1}

S = 1 3 + 1 3 + 1 3 + 1 5 + 1 5 + 1 5 + 1 5 + 1 5 + . . . + 1 21 \large \displaystyle S = \frac13 + \frac13 + \frac13 + \frac15 + \frac15 + \frac15 + \frac15 + \frac15 + ... + \frac{1}{21}

S = 3 1 3 + 5 1 5 + 7 1 7 + 9 1 9 + 11 1 11 + 13 1 13 + 15 1 15 + 17 1 17 + 19 1 19 + 18 1 21 \large \displaystyle S = 3\cdot \frac13 + 5\cdot \frac15 + 7\cdot \frac17 + 9\cdot \frac19 + 11\cdot \frac{1}{11} + 13\cdot \frac{1}{13} + 15\cdot \frac{1}{15} + 17\cdot \frac{1}{17} + 19\cdot \frac{1}{19} + 18\cdot \frac{1}{21}

S = 6 + 6 7 \large \displaystyle S = 6 + \frac67

S = 69 7 \color{#20A900} \boxed{ \large \displaystyle S = \frac{69}{7}}

So:

a = 69 , b = 7 , a + b + 2 = 78 \color{#3D99F6} a = 69, b = 7, \boxed{ \large \displaystyle a+b+2 = 78}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...