Sequences and series (8)

Algebra Level 4

The n t h n^{th} term of the sequence is given by t n = n 5 + n 3 n 4 + n 2 + 1 t_{n}= \dfrac{n^5 +n^3}{n^4+n^2+1} and if sum of its n n terms can be expressed as S n = a n 2 + a + 1 b n 2 + b S_{n}=a_{n}^2 +a+ \dfrac{1}{b_{n}^2 +b} , where a n a_{n} and b n b_{n} are the n t h n^{th} terms of some arithmetic progression and a , b a,b are some constants. Then find the positive integral value of b n a n \dfrac{b_{n}}{a_{n}} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We note that:

S n = k = 1 n k 5 + k 3 k 4 + k 2 + 1 = k = 1 n k ( k 4 + k 2 + 1 ) k k 4 + k 2 + 1 = k = 1 n ( k k k 4 + k 2 + 1 ) = k = 1 n ( k 1 2 ( 1 k 2 k + 1 1 k 2 + k + 1 ) ) = k = 1 n k 1 2 ( k = 1 n 1 k 2 k + 1 k = 1 n 1 k 2 + k + 1 ) = k = 1 n k 1 2 ( k = 1 n 1 k 2 k + 1 k = 2 n + 1 1 k 2 k + 1 ) = n ( n + 1 ) 2 1 2 ( 1 1 n 2 + n + 1 ) = n 2 + n 2 1 2 + 1 2 ( n 2 + n + 1 ) Note that n 2 + n = ( 3 2 = a + ( n 1 ) ( 1 ) = d ) 2 1 4 = ( 3 2 2 + ( n 1 ) 1 2 ) 2 5 8 + 1 ( 3 2 2 + ( n 1 ) 2 ) 2 + 1 2 \begin{aligned} S_n & = \sum_{k=1}^n \frac {k^5+k^3}{k^4+k^2+1} \\ & = \sum_{k=1}^n \frac {k(k^4+k^2+1)-k}{k^4+k^2+1} \\ & = \sum_{k=1}^n \left( k - \frac k{k^4+k^2+1} \right) \\ & = \sum_{k=1}^n \left( k - \frac 12 \left( \frac 1{k^2-k+1} - \frac 1{k^2+k+1} \right) \right) \\ & = \sum_{k=1}^n k - \frac 12 \left( \sum_{k=1}^n \frac 1{k^2-k+1} - \sum_{\color{#3D99F6}k=1}^{\color{#3D99F6}n} \frac 1{\color{#3D99F6}k^2+k+1} \right) \\ & = \sum_{k=1}^n k - \frac 12 \left( \sum_{k=1}^n \frac 1{k^2-k+1} - \sum_{\color{#D61F06}k=2}^{\color{#D61F06}n+1} \frac 1{\color{#D61F06}k^2-k+1} \right) \\ & = \frac {n(n+1)}2 - \frac 12 \left(1 - \frac 1{n^2+n+1} \right) \\ & = \frac {\color{#3D99F6}n^2+n}2 - \frac 12 + \frac 1{2({\color{#3D99F6}n^2+n}+1)} & \small \color{#3D99F6} \text{Note that } n^2 + n = \big(\underbrace{\frac 32}_{=a} + (n-1)\underbrace{(1)}_{=d} \big)^2 - \frac 14 \\ & = \left({\color{#3D99F6}\frac 3{2\sqrt 2}} + (n-1){\color{#3D99F6}\frac 1{\sqrt 2}} \right)^2 - \frac 58 + \frac 1{ \left({\color{#3D99F6}\frac {3\sqrt 2}2} + (n-1){\color{#3D99F6}\sqrt 2} \right)^2+\frac 12} \end{aligned}

b n a n = 3 2 2 + ( n 1 ) 2 3 2 2 + ( n 1 ) 1 2 = 2 \implies \dfrac {b_n}{a_n} = \dfrac {\frac {3\sqrt 2}2 + (n-1)\sqrt 2}{\frac 3{2\sqrt 2} + (n-1)\frac 1{\sqrt 2}} = \boxed{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...