Almost Consecutive

Calculus Level 5

1 + 4 6 + 4 5 6 9 + 4 5 6 6 9 12 + 4 5 6 7 6 9 12 15 + 1 + \frac {4}{6} + \frac {4 \cdot 5}{6\cdot 9}+ \frac {4 \cdot 5\cdot 6}{6\cdot 9\cdot 12} + \frac {4 \cdot 5\cdot 6 \cdot 7}{6\cdot 9\cdot 12 \cdot 15} + \ldots

If the value of the series above is in the form of a b \frac a b where a , b a,b are coprime positive integers, what is the value of a + b a + b ?


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rudresh Tomar
Dec 11, 2014

T h e s e q u e n c e i s : 0 ( n + 3 ) ( n + 2 ) 3 n 3 ! = 19 8 [ b r e a k t h e t e r m s a n d t h e n s o l v e i t ] The\quad sequence\quad is:\\ \Longrightarrow \sum _{ 0 }^{ \infty }{ \frac { (n+3)(n+2) }{ { 3 }^{ n }3! } } =\frac { 19 }{ 8 } \\ [break\quad the\quad terms\quad and\quad then\quad solve\quad it]

How exactly would you do that?

Trevor Arashiro - 6 years, 4 months ago

Log in to reply

Hope my solution helps! =D

Pi Han Goh - 6 years, 2 months ago
Pi Han Goh
Mar 30, 2015

1 + 4 6 + 4 5 6 9 + 4 5 6 6 9 12 + 4 5 6 7 6 9 12 15 + = 3 [ 1 3 + 4 3 6 + 4 5 3 6 9 + 4 5 6 3 6 9 12 + ] = 3 [ 3 ! / 3 ! 3 1 1 ! + 4 ! / 3 ! 3 2 2 ! + 5 ! / 3 ! 3 3 3 ! + 6 ! / 3 ! 3 4 4 ! + ] = 3 k = 1 ( k + 2 ) ! / 3 ! 3 k k ! = 1 2 k = 1 ( k + 2 ) ( k + 1 ) 3 k \begin{aligned} & & 1 + \frac {4}{6} + \frac {4 \cdot 5}{6\cdot 9}+ \frac {4 \cdot 5\cdot 6}{6\cdot 9\cdot 12} + \frac {4 \cdot 5\cdot 6 \cdot 7}{6\cdot 9\cdot 12 \cdot 15} + \ldots \\ & = & 3 \bigg [ \frac {1}{3} + \frac {4}{3 \cdot 6} + \frac {4 \cdot 5}{3 \cdot 6 \cdot 9} + \frac {4 \cdot 5 \cdot 6}{3 \cdot 6 \cdot 9 \cdot 12} + \ldots \bigg ] \\ & = & 3 \bigg [ \frac {3!/3!}{3^1 \cdot 1!} + \frac {4!/3!}{3^2 \cdot 2!} + \frac {5!/3!}{3^3 \cdot 3!} + \frac {6!/3!}{3^4 \cdot 4!} + \ldots \bigg ] \\ & = & 3 \sum_{k=1}^\infty \frac {(k+2)!/3!}{3^k \cdot k!} \\ & = & \frac {1}{2} \sum_{k=1}^\infty \frac {(k+2)(k+1)}{3^k} \\ \end{aligned}

Which gives 19 8 \frac {19}{8} by using the properties of j = 0 x j = 1 1 x \displaystyle \sum_{j=0}^\infty x^j = \frac {1}{1-x} for j < 1 \mid j \mid < 1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...