Sequences of functions 2

Calculus Level 4

Let S n ( x ) = j = 1 n 1 ( x + j ) ( x + j + 1 ) S_{n}(x) = \sum_{j = 1}^{n} \dfrac{1}{(x + j)(x + j + 1)} and T n ( x ) = j = 1 n 1 ( x j ) ( x j 1 ) T_{n}(x) = \sum_{j = 1}^{n} \dfrac{1}{(x - j)(x - j - 1)} .

When revolved about the x x axis let V 1 V_{1} be the volume of the region bounded by S n ( x ) S_{n}(x) and the x x axis on [ n 1 , ) [n - 1,\infty) and V 2 V_{2} be the volume of the region bounded by T n ( x ) T_{n}(x) and the x x axis on [ 2 n + 1 , ) [2n + 1,\infty) .

Find V 1 V 2 V_{1} - V_{2} .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jul 19, 2018

S n ( x ) = j = 1 n 1 ( x + j ) ( x + j + 1 ) = j = 1 n 1 x + j 1 x + j + 1 = 1 x + 1 1 x + n + 1 S_{n}(x) = \sum_{j = 1}^{n} \dfrac{1}{(x + j)(x + j + 1)} = \sum_{j = 1}^{n} \dfrac{1}{x + j} - \dfrac{1}{x + j + 1} = \dfrac{1}{x + 1} - \dfrac{1}{x + n + 1}

and

T n ( x ) = j = 1 n 1 ( x j ) ( x j 1 ) = j = 1 n 1 x j 1 1 x j = 1 x n 1 1 x 1 T_{n}(x) = \sum_{j = 1}^{n} \dfrac{1}{(x - j)(x - j - 1)} = \sum_{j = 1}^{n} \dfrac{1}{x - j - 1} - \dfrac{1}{x - j} = \dfrac{1}{x - n - 1} - \dfrac{1}{x - 1}

V 1 = π n 1 S n ( x ) d x = π n 1 ( 1 x + 1 1 x + n + 1 ) 2 d x = V_{1} = \pi\int_{n - 1}^{\infty} S_{n}(x) dx = \pi\int_{n - 1}^{\infty} (\dfrac{1}{x + 1} - \dfrac{1}{x + n + 1})^2 dx = π n 1 ( ( x + 1 ) 2 2 n ( 1 x + 1 1 x + n + 1 ) + ( x + n + 1 ) 2 ) d x = \pi\int_{n - 1}^{\infty} ((x + 1)^{-2} - \dfrac{2}{n}(\dfrac{1}{x + 1} - \dfrac{1}{x + n + 1}) + (x + n + 1)^{-2}) dx = π ( 1 x + 1 2 n ( ln ( 1 n x + n + 1 ) ) 1 x + n + 1 ) n 1 = \pi(-\dfrac{1}{x + 1} - \dfrac{2}{n}(\ln(1 - \dfrac{n}{x + n + 1})) - \dfrac{1}{x + n + 1})|_{n - 1}^{\infty} = π n ( 3 2 + 2 ln ( 1 2 ) ) \boxed{\dfrac{\pi}{n}(\dfrac{3}{2} + 2\ln(\dfrac{1}{2}))}

V 2 = π 2 n + 1 T n ( x ) d x = π 2 n + 1 ( 1 x n 1 1 x n + 1 ) 2 d x = V_{2} = \pi\int_{2n + 1}^{\infty} T_{n}(x) dx = \pi\int_{2n + 1}^{\infty} (\dfrac{1}{x - n - 1} - \dfrac{1}{x - n + 1})^2 dx = π 2 n + 1 ( ( x n 1 ) 2 2 n ( 1 x n 1 1 x 1 ) + ( x 1 ) 2 ) d x = \pi\int_{2n + 1}^{\infty} ((x - n - 1)^{-2} - \dfrac{2}{n}(\dfrac{1}{x - n - 1} - \dfrac{1}{x - 1}) + (x - 1)^{-2}) dx = π ( 1 x n 1 2 n ( ln ( 1 n x 1 ) ) 1 x 1 ) 2 n + 1 = \pi(-\dfrac{1}{x - n - 1} - \dfrac{2}{n}(\ln(1 - \dfrac{n}{x - 1})) - \dfrac{1}{x - 1})|_{2n + 1}^{\infty} = π n ( 3 2 + 2 ln ( 1 2 ) ) \boxed{\dfrac{\pi}{n}(\dfrac{3}{2} + 2\ln(\dfrac{1}{2}))}

V 1 V 2 = 0 \implies \boxed{V_{1} - V_{2} = 0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...