Sequential limit

Calculus Level 5

Find the value of lim n 1 i < j n ( i + 1 ) ( j + 1 ) n 4 \displaystyle \lim_{n \to \infty} \displaystyle \dfrac{ \displaystyle \sum_{1 \leq i<} \displaystyle \sum_{j \leq n} (i+1)(j+1)}{n^4}

If you're looking to skyrocket your preparation for JEE-2015, then go for solving this set of questions .
1 4 \frac{1}{4} 1 3 \frac{1}{3} 1 6 \frac{1}{6} 1 8 \frac{1}{8} None of the given values.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Deepanshu Gupta
Mar 12, 2015

Let our required Limit as " L " . Also Consider an n × n n\times n matrix , Such that a i j { a }_{ ij } represent element of i i th row and j j th column. Also let a i j = ( i + 1 ) ( j + 1 ) { a }_{ ij }=\left( i+1 \right) \left( j+1 \right) .

Again let, S 1 = i > j n a i j i > j n ( i + 1 ) ( j + 1 ) S 2 = i < j n a i j i < j n ( i + 1 ) ( j + 1 ) S 3 = i = j n a i j = i = 1 n a i i i = j n ( i + 1 ) ( j + 1 ) i = 1 n ( i + 1 ) 2 S = S 1 + S 2 + S 3 = i = 1 n j = 1 n ( i + 1 ) ( j + 1 ) ( i = 1 n ( i + 1 ) ) 2 \displaystyle{{ S }_{ 1 }=\sum _{ i>j }^{ n }{ { a }_{ ij } } \equiv \sum _{ i>j }^{ n }{ \left( i+1 \right) \left( j+1 \right) } \\ { S }_{ 2 }=\sum _{ i<j }^{ n }{ { a }_{ ij } } \equiv \sum _{ i<j }^{ n }{ \left( i+1 \right) \left( j+1 \right) } \\ { S }_{ 3 }=\sum _{ i=j }^{ n }{ { a }_{ ij } } =\sum _{ i=1 }^{ n }{ { a }_{ ii } } \equiv \sum _{ i=j }^{ n }{ \left( i+1 \right) \left( j+1 \right) } \equiv \sum _{ i=1 }^{ n }{ { \left( i+1 \right) }^{ 2 } } \\ S={ S }_{ 1 }+{ S }_{ 2 }+{ S }_{ 3 }=\sum _{ i=1 }^{ n }{ \sum _{ j=1 }^{ n }{ \left( i+1 \right) \left( j+1 \right) } } \equiv { \left( \sum _{ i=1 }^{ n }{ { \left( i+1 \right) } } \right) }^{ 2 }}

So Our Target is to calculate S 2 = ? { S }_{ 2 }=? , But Since due to symmetrical distribution in matrix , S 2 = S 1 S S 3 2 { S }_{ 2 }={ S }_{ 1 }\equiv \cfrac { S-{ S }_{ 3 } }{ 2 } .

L = lim n S 2 = lim n ( ( i = 1 n ( i + 1 ) ) 2 i = 1 n ( i + 1 ) 2 2 n 4 ) L = lim n ( ( i = 1 n ( i + 1 ) ) 2 2 n 4 0 ) = lim n ( ( n ( n + 1 ) 2 ) 2 2 n 4 ) L = 1 8 \displaystyle{L=\lim _{ n\rightarrow \infty }{ { S }_{ 2 } } =\lim _{ n\rightarrow \infty }{ \left( \cfrac { { \left( \sum _{ i=1 }^{ n }{ { \left( i+1 \right) } } \right) }^{ 2 }-\sum _{ i=1 }^{ n }{ { \left( i+1 \right) }^{ 2 } } }{ 2{ n }^{ 4 } } \right) } \\ L=\lim _{ n\rightarrow \infty }{ \left( \cfrac { { \left( \sum _{ i=1 }^{ n }{ { \left( i+1 \right) } } \right) }^{ 2 } }{ 2{ n }^{ 4 } } -0 \right) } =\lim _{ n\rightarrow \infty }{ \left( \cfrac { { { \left( \cfrac { n(n+1) }{ 2 } \right) }^{ 2 } } }{ 2{ n }^{ 4 } } \right) } \\ \boxed { L=\cfrac { 1 }{ 8 } } \\ }

Thank you Deepanshu for such a wonderful solution. keep it up. ¨ \ddot \smile

Sandeep Bhardwaj - 6 years, 3 months ago

Nice man, that was a good way, my method was to fix an 'i' sum for all 'j' and then subtract the extra term (where i=j) and then go,

Mvs Saketh - 6 years, 3 months ago

@Deepanshu Gupta I think there is a typo in the final step..Instead of n ( n + 1 n(n+1 , it should be n ( n + 3 ) n(n+3)

Ankit Kumar Jain - 3 years, 3 months ago

Great Solution Using Matrix in such a beautiful way is truly remarkable!!!

Rajyawardhan Singh - 4 months, 1 week ago

could someone explain how Aij=(i+1)(j+1)

Zerocool 141 - 4 years, 8 months ago
Devansh Sharma
Jul 6, 2017

Here is my approach to this problem

Really a very nice solution. Thumbs up 👍

gaurav sethi - 3 years, 11 months ago

Awesome bro

Nivedit Jain - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...