Sequential Lemma!

Calculus Level 4

Let the sequence a r { a }_{ r } r = 1 , 2 , 3 , . . . r = {1, 2, 3, ...\infty} be such that a 1 = 4 a_1 = 4 , a 2 = 3 a_2 = 3 , and 2 a n + 1 = 3 a n a n 1 2{ a }_{ n+1 } = 3{ a }_{ n } - { a }_{ n-1 } for all n 2 n\ge 2 .

What is the value of lim n ( a n 1 ) ( a n 2 ) ( a n + 2 2 ) ( 12 a n 8 2 ) ? \large\ \lim _{ n\rightarrow \infty }{ \frac { \left( { a }_{ n } -1 \right) \left( { a }_{ n } - 2 \right) }{ \left( \sqrt { { a }_{ n } + 2 } - 2 \right) \left( \sqrt { 12{ a }_{ n } - 8 } - 2 \right) } } ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: L'Hopital's Rule - Basic

Let a n = b n 1 a_n = b_{n-1} , then we have a 1 = b 0 = 4 a_1 = b_0 = 4 , a 2 = b 1 = 3 a_2 = b_1 = 3 and 2 b n + 1 = 3 b n b n 1 2b_{n+1} = 3b_n - b_{n-1} for all n 1 n \ge 1 . Then the characteristic of the linear recurrence relation is as follows:

2 r 2 3 r + 1 = 0 ( 2 r 1 ) ( r 1 ) = 0 \begin{aligned} 2r^2 - 3r + 1 & = 0 \\ (2r-1)(r-1) & = 0 \end{aligned}

b n = c 1 2 n + c 2 b 0 = c 1 + c 2 = 4 b 1 = c 1 2 + C 2 = 3 c 1 = c 2 = 2 b n = 2 + 1 2 n 1 a n = 2 + 1 2 n 2 Note that lim n a n = 2 \begin{aligned} \implies b_n & = \frac {c_1}{2^n} + c_2 \\ b_0 & = c_1 + c_2 = 4 \\ b_1 & = \frac {c_1}2 + C_2 = 3 \\ \implies c_1 & = c_2 = 2 \\ b_n & = 2 + \frac 1{2^{n-1}} \\ \implies a_n & = 2 + \frac 1{2^{n-2}} & \small \color{#3D99F6} \text{Note that }\lim_{n \to \infty} a_n = 2 \end{aligned}

Therefore,

L = lim n ( a n 1 ) ( a n 2 ) ( a n + 2 2 ) ( 12 a n 8 2 ) Let x = a n = lim x 2 ( x 1 ) ( x 2 ) ( x + 2 2 ) ( 12 x 8 2 ) A 0/0 case, L’H o ˆ pital’s rule applies. = lim x 2 ( x 2 ) + ( x 1 ) 12 x 8 2 2 x + 2 + 6 ( x + 2 2 ) 12 x 8 Differentiate up and down w.r.t. x = 1 2 4 + 0 = 2 \begin{aligned} L & = \lim_{n \to \infty} \frac {\left(a_n-1\right)\left(a_n-2\right)}{\left(\sqrt{a_n+2}-2\right)\left(\sqrt{12a_n-8}-2\right)} & \small \color{#3D99F6} \text{Let } x = a_n \\ & = \lim_{x \to 2} \frac {(x-1)(x-2)}{\left(\sqrt{x+2}-2\right)\left(\sqrt{12x-8}-2\right)} & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies.} \\ & = \lim_{x \to 2} \frac {(x-2)+(x-1)}{\frac {\sqrt{12x-8}-2}{2\sqrt{x+2}}+\frac {6\left(\sqrt{x+2}-2\right)}{\sqrt{12x-8}}} & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x \\ & = \frac 1{\frac 24 + 0} = \boxed{2} \end{aligned}

Claim: The explicity expression for the sequence is a n = 2 + 4 ( 1 2 ) n . a_n = 2 + 4\cdot (\tfrac12)^n. Derivation: In general, the solutions of this type of recurrence relations are linear combinations of a n = p n a_n = p^n . Substituting this, we see that p 2 = 3 p 1 , p^2 = 3p - 1, the solutions to which are p = 1 p = 1 and p = 1 2 p = \tfrac12 . Therefore the general solution of the recurrence relation is a n = A + B ( 1 2 ) n ; a_n = A + B\cdot (\tfrac12)^n; substituting the known values a 1 = 4 a_1 = 4 and a 2 = 3 a_2 = 3 quickly shows that A = 2 A = 2 and B = 4 B = 4 .

To solve the limit, note that a n 2 a_n \to 2 . This takes care of the first term in the numerator and the last term in the denominator; we are left with lim n 1 4 ( 1 2 ) n ( 2 1 + ( 1 2 ) n 2 ) 2 ; \lim_{n\to\infty} \frac{1\cdot 4\cdot (\tfrac12)^n}{\left(2\sqrt{1 + (\tfrac12)^n} - 2\right)\cdot 2}; both numerator and denominator tend to zero. Use the substitution 1 + x 1 + 1 2 x \sqrt{1 + x} \approx 1 + \tfrac12x for x 0 x \to 0 to rewrite the limit: lim n 1 4 ( 1 2 ) n ( 2 ( 1 + 1 2 ( 1 2 ) n ) 2 ) 2 = 4 ( 1 2 ) n 2 ( 1 2 ) n = 2 . \lim_{n\to\infty} \frac{1\cdot 4\cdot (\tfrac12)^n}{\left(2(1 + \tfrac12\cdot (\tfrac12)^n) - 2\right)\cdot 2} = \frac{4\cdot (\tfrac12)^n}{2\cdot (\tfrac12)^n} = \boxed{2}.

Solved similarly .... Just found the limit by rationalising the denominator.....

Aaghaz Mahajan - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...