Serie-ous Series

Calculus Level 3

Which of the following series converge?

Series A : \large \color{#D61F06}{A:} 1 + 1 2 + 1 3 + 1 4 + 1 5 + \LARGE 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots

Series B : \large \color{#3D99F6}{B:} 1 1 2 + 1 3 1 4 + 1 5 \LARGE 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots

Series C : \large \color{#20A900}{C:} 1 1 1 ! + 1 2 ! 1 3 ! + 1 4 ! \LARGE 1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\ldots

Series D : \large \color{#3D99F6}{D:} 1 2 + 1 3 + 1 5 + 1 7 + 1 11 + \LARGE \frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{11}+\ldots (Reciprocal of Primes)

Series E : \large \color{#D61F06}{E:} 1 2 + 1 3 1 5 + 1 7 1 11 + \LARGE -\frac{1}{2}+\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{11}+\ldots (Reciprocal of Primes)

Series F : \large \color{#20A900}{F:} 1 1 + 1 1 + 1 2 + 1 3 + 1 5 + 1 8 + 1 13 + \LARGE \frac{1}{1}+\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{8}+\frac{1}{13}+\ldots (Reciprocal of Fibonacci numbers)

Series G : \large \color{#D61F06}{G:} 1 1 2 2 + 1 3 2 1 4 2 + 1 5 2 \LARGE 1-\frac{1}{2^2}+\frac{1}{3^2}-\frac{1}{4^2}+\frac{1}{5^2}-\ldots

Series H : \large \color{#3D99F6}{H:} 1 1 ( 1 1 1 ) + 1 2 ( 1 2 1 ) + 1 3 ( 1 3 1 ) + \Large \frac{1}{1}\Bigg(\frac{1}{1}-1\Bigg)+\frac{1}{2}\Bigg(\frac{1}{2}-1\Bigg)+\frac{1}{3}\Bigg(\frac{1}{3}-1\Bigg)+\ldots

Series I : \large \color{#20A900}{I:} n = 0 F n ( 2 3 ) n \Large \displaystyle \sum_{n=0}^\infty F_n \Bigg(\frac{2}{3}\Bigg)^n

Series J : \large \color{#3D99F6}{J:} 1 2 + 3 4 + 5 6 + \Large 1-2+3-4+5-6+\ldots

Note that F n F_n is a Fibonacci number

Please do read the solution after attempting...

None of Them A D H I J \color{#D61F06}{A}\color{#3D99F6}{DH}\color{#20A900}{I}\color{#3D99F6}{J} C E F G J \color{#20A900}{C}\color{#D61F06}{E}\color{#20A900}{F}\color{#D61F06}{G}\color{#3D99F6}{J} B C E F G \color{#3D99F6}{B}\color{#20A900}{C}\color{#D61F06}{E}\color{#20A900}{F}\color{#D61F06}{G} E F G I J \color{#D61F06}{E}\color{#20A900}{F}\color{#D61F06}{G}\color{#20A900}{I}\color{#3D99F6}{J} B C G H I \color{#3D99F6}{B}\color{#20A900}{C}\color{#D61F06}{G}\color{#3D99F6}{H}\color{#20A900}{I} All of Them D E G H I \color{#3D99F6}{D}\color{#D61F06}{EG}\color{#3D99F6}{H}\color{#20A900}{I}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Digvijay Singh
Jun 4, 2015

Series A : \large \color{#D61F06}{A:} Divergent because it is a harmonic series and any such series always diveges. More information here

Series B : \large \color{#3D99F6}{B:} Convergent. Converges to ln 2 \large \ln2 ; it can be shown using Mercator_series

Series C : \large \color{#20A900}{C:} Convergent. Converges to 1 e \large \frac{1}{e} ; it can be shown using the Taylor Series of e x \large e^x

Series D : \large \color{#3D99F6}{D:} Divergent; as proved by Leonhard Euler in 1737.

Series E : \large \color{#D61F06}{E:} Convergent. Click here for more information. Click here for the integer sequence of the resulting number.

Series F : \large \color{#20A900}{F:} Convergent. Converges to Reciprocal Fibonacci constant ( ψ ) (\large ψ) . Click here and here for more information.

Series G : \large \color{#D61F06}{G:} Convergent. Converges to π 2 12 \large \frac{\pi^2}{12} . Click here for more information.

Series H : \large \color{#3D99F6}{H:} Divergent; beacause it can be rearranged easily to ζ ( 2 ) \large \zeta(2)- Series A \large \color{#D61F06}{A} and because Series A \large \color{#D61F06}{A} is divergent, the whole sum becomes divergent.

Series I : \large \color{#20A900}{I:} Divergent; because the series of type n = 0 F n ( x ) n \large \displaystyle \sum_{n=0}^\infty F_n (x)^n converges only when x < 1 φ \large |x|<\frac{1}{φ} , and in this case, 2 3 0.666... \large \frac{2}{3}\approx 0.666... is greater than 1 φ 0.61803 \large \frac{1}{φ}\approx 0.61803 . For more information, click here .

Series J : \large \color{#3D99F6}{J:} Divergent; because its sequence of partial sums, ( 1 , 1 , 2 , 2 , . . . ) \large (1, -1, 2, -2, ...) , does not tend towards any finite limit. A paradoxical result to the sum was computed by Leonhard Euler, that is 1 2 + 3 4 + 5 6 + = 1 4 \large 1-2+3-4+5-6+\ldots=\frac{1}{4} but this was later proved wrong. Click here for more information.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...