See Reese

Algebra Level 2

The n t h n^{th} term of the series 1 2 , ( 1 2 + 2 2 ) , ( 1 2 + 2 2 + 3 2 ) 1^2 , ( 1^2 + 2^2 ) , ( 1^2 + 2^2 + 3^2 ) , \ldots is?

n ( n + 1 ) ( 2 n + 1 ) 6 \frac{ n(n + 1)(2n + 1) }{6} n ( n + 1 ) 2 \frac{ n(n + 1) }{2} n 2 ( n + 1 ) 2 2 \frac{n^2 (n + 1)^2 }{2} n 2 + ( n 1 ) 2 + ( n 2 ) 2 n^2 + (n - 1)^2 + (n - 2)^2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ruslan Abdulgani
Mar 11, 2015

Un = an3 + bn2 + cn + d, a+b+c+d = 1
8a+4b+2c+d=5 7a+3b+c=4 12a+2b=5 27a+9b+3c+d=14 19a+5b+c=9 18a+2b=7, 64a+16b+4c+d=30 37a+7b+c=16,
a=1/3, b=1/2, c=1/6, d=0 Un = 1/6n(2n2 + 3n +1) = 1/6(2n+1)(n+1)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...