Series

Geometry Level 2

tan 5 tan 1 0 tan 1 5 tan 8 0 = ? \large \tan 5^\circ \tan 10^\circ \tan 15^\circ \cdots \tan 80^\circ = \ ?

tan 5 \tan 5^\circ Undefined tan 4 5 \tan 45^\circ tan 0 \tan 0^\circ

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Shòvon Saha
Aug 12, 2017

tan10°. tan80° =tan 10°.cot10° =1. In such way, tan15°.tan75°=1, tan20°.tan 70°=1, ... ... tan45°.tan 45°=1. So we can say, tan5°.1.1.1.1.1.1.1.1= tan5°

Nice problem

Hana Wehbi - 3 years, 10 months ago
Edwin Gray
Mar 4, 2019

tan(80) = sin(80)/cos(80) = sin(90 - 10)/cos(90 - 10) = cos(10)/sin(10). So tan(10) tan(80) = sin(10) cos(10)/[sin(10)*cos(10)] = 1. All pairings from 10 to 80 give a product of 1 and we are left with tan(5).

Miksu Rankaviita
Mar 26, 2018

tan 5 tan 1 0 tan 1 5 tan 8 0 \tan5^{\circ}\cdot \tan10^{\circ} \cdot \tan15^{\circ} \cdots \tan80^{\circ}

= tan 5 sin 1 0 sin 1 5 sin 8 0 cos 1 0 cos 1 5 cos 8 0 =\tan5^{\circ}\frac{\sin10^{\circ} \cdot \sin15^{\circ} \cdots \sin80^{\circ}}{\cos10^{\circ} \cdot \cos15^{\circ} \cdots \cos80^{\circ}}

Because sin x = cos ( 9 0 x ) \sin x = \cos(90^{\circ}-x) , we have

= tan 5 sin 1 0 sin 1 5 sin 8 0 sin 1 0 sin 1 5 sin 8 0 =\tan5^{\circ}\frac{\sin10^{\circ} \cdot \sin15^{\circ} \cdots \sin80^{\circ}}{\sin10^{\circ} \cdot \sin15^{\circ} \cdots \sin80^{\circ}}

= tan 5 =\tan5^{\circ}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...