Series and Areas

Calculus Level 5

Let x < 1 |x| < 1

Let f ( x ) = 4 9 x 2 + 16 9 x + 1 f(x) = \dfrac{4}{9}x^2 + \dfrac{16}{9}x + 1 , g ( x ) = n = 0 ( a 1 + a 2 n + a 3 n 2 ) x n g(x) = \sum_{n = 0}^{\infty} (a_{1} + a_{2}n + a_{3}n^2)x^n , f ( 1 2 ) = g ( 1 2 ) f(\dfrac{1}{2}) = g(\dfrac{1}{2}) , f ( 1 2 ) = g ( 1 2 ) f(-\dfrac{1}{2}) = g(-\dfrac{1}{2}) and 1 2 1 2 f ( x ) d x = 1 2 1 2 g ( x ) d x \displaystyle\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} g(x) dx .

If a 1 + a 2 + a 3 = α β 2 ln ( β ) λ α β ( β ln ( β ) α α ) a_{1} + a_{2} + a_{3} = \dfrac{\alpha * \beta^2\ln(\beta) - \lambda}{\alpha * \beta(\beta\ln(\beta) - \alpha^{\alpha})} , where α , β \alpha,\beta and λ \lambda are coprime positive integers, find α + β + λ \alpha + \beta + \lambda .


The answer is 34.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Aug 5, 2018

Let x < 1 |x| < 1 .

g ( x ) = n = 0 ( a 1 + a 2 n + a 3 n 2 ) x n = a 1 n = 0 x n + a 2 n = 0 n x n + a 3 n = 0 n 2 x n g(x) = \sum_{n = 0}^{\infty} (a_{1} + a_{2}n + a_{3}n^2)x^n = a_{1}\sum_{n = 0}^{\infty} x^n + a_{2}\sum_{n = 0}^{\infty} n x^n + a_{3}\sum_{n = 0}^{\infty} n^2 x^n .

a 1 n = 0 x n + a 2 n = 0 n x n = a 1 1 x + a 2 j = 1 n = j x n = a_{1}\sum_{n = 0}^{\infty} x^n + a_{2}\sum_{n = 0}^{\infty} n x^n = \dfrac{a_{1}}{1 - x} + a_{2}\sum_{j = 1}^{\infty}\sum_{n = j}^{\infty} x^n = a 1 1 x + a 2 1 x j = 1 x j = a 1 1 x + a 2 1 x ( x 1 x ) = a 1 1 x + a 2 x ( 1 x ) 2 \dfrac{a_{1}}{1 - x} + \dfrac{a_{2}}{1 - x}\sum_{j = 1}^{\infty} x^{j} = \dfrac{a_{1}}{1 - x} + \dfrac{a_{2}}{1 - x}(\dfrac{x}{1 - x}) = \boxed{\dfrac{a_{1}}{1 - x} + \dfrac{a_{2}x}{(1 - x)^2}}

and,

n = 1 n 2 x n = j = 1 n = j n x n = \sum_{n = 1}^{\infty} n^2 x^n = \sum_{j = 1}^{\infty}\sum_{n = j}^{\infty} n x^n = j = 1 ( j x j + ( j + 1 ) x j + 1 + ( j + 2 ) x j + 2 + . . . ) = \sum_{j = 1}^{\infty} (j x^{j} + (j + 1)x^{j + 1} + (j + 2)x^{j + 2} + ... ) = 1 1 x j = 1 j x j + x ( 1 x ) 2 j = 1 x j = \dfrac{1}{1 - x}\sum_{j = 1}^{\infty} j x^{j} + \dfrac{x}{(1 - x)^2}\sum_{j = 1}^{\infty} x^{j} = ( 1 1 x ) ( x ( 1 x ) 2 ) + ( x ( 1 x ) 2 ) ( x 1 x ) ) = x 2 + x ( 1 x ) 3 (\dfrac{1}{1 - x})(\dfrac{x}{(1 - x)^2}) + (\dfrac{x}{(1 - x)^2})(\dfrac{x}{1 - x})) = \boxed{\dfrac{x^2 + x}{(1 - x)^3}}

g ( x ) = a 1 1 x + a 2 x ( 1 x ) 2 + a 3 ( x 2 + x ) ( 1 x ) 3 \implies \boxed{g(x) = \dfrac{a_{1}}{1 - x} + \dfrac{a_{2}x}{(1 - x)^2} + \dfrac{a_{3}(x^2 + x)}{(1 - x)^3}}

Let f ( x ) = 4 9 x 2 + 16 9 x + 1 f(x) = \dfrac{4}{9}x^2 + \dfrac{16}{9}x + 1 .

f ( 1 2 ) = g ( 1 2 ) f(\dfrac{1}{2}) = g(\dfrac{1}{2}) and f ( 1 2 ) = g ( 1 2 ) f(-\dfrac{1}{2}) = g(-\dfrac{1}{2}) \implies

a 1 + a 2 + 3 a 3 = 1 \boxed{a_{1} + a_{2} + 3a_{3} = 1}

9 a 1 3 a 2 a 3 = 3 \boxed{9a_{1} - 3a_{2} - a_{3} = 3}

1 2 1 2 f ( x ) d x = 4 x 3 27 + 16 x 2 18 + x 1 2 1 2 = 28 27 \displaystyle\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) dx = \dfrac{4x^3}{27} + \dfrac{16x^2}{18} + x|_{-\frac{1}{2}}^{\frac{1}{2}} = \dfrac{28}{27}

28 27 = a 1 1 2 1 2 1 1 x d x + a 2 1 2 1 2 x ( 1 x ) 2 d x + a 3 1 2 1 2 x ( x + 1 ) ( 1 x ) 3 d x \implies \dfrac{28}{27} = a_{1}\displaystyle\int_{-\frac{1}{2}}^{\frac{1}{2}} \dfrac{1}{1 - x} dx + a_{2}\displaystyle\int_{-\frac{1}{2}}^{\frac{1}{2}} \dfrac{x}{(1 - x)^2} dx + a_{3}\displaystyle\int_{-\frac{1}{2}}^{\frac{1}{2}} \dfrac{x(x + 1)}{(1 - x)^3} dx

Let I 1 = 1 2 1 2 1 1 x d x = ln ( 1 x ) 1 2 1 2 = ln ( 3 ) I_{1} = \displaystyle\int_{-\frac{1}{2}}^{\frac{1}{2}} \dfrac{1}{1 - x} dx = -\ln(1 - x)|_{-\frac{1}{2}}^{\frac{1}{2}} = \boxed{\ln(3)}

Let I 2 ( x ) = x ( 1 x ) 2 d x I_{2}(x) = \displaystyle\int \dfrac{x}{(1 - x)^2} dx and u = 1 x d x = d u u = 1 - x \implies dx = -du \implies

I 2 ( x ) = u 2 1 u d u = 1 u + ln ( u ) = 1 1 x + ln ( 1 x ) I_{2}(x) = -\displaystyle\int u^{-2} - \dfrac{1}{u} du = \dfrac{1}{u} + \ln(u) = \dfrac{1}{1 - x} + \ln(1 - x)

and,

I 2 = I 2 ( x ) 1 2 1 2 = 4 3 ln ( 3 ) I_{2} = I_{2}(x)|_{-\frac{1}{2}}^{\frac{1}{2}} = \boxed{\dfrac{4}{3} - \ln(3)}

Let I 3 ( x ) = x ( x + 1 ) ( 1 x ) 3 d x I_{3}(x) = \displaystyle\int \dfrac{x(x + 1)}{(1 - x)^3} dx and u = 1 x d x = d u u = 1 - x \implies dx = -du \implies

I 3 ( x ) = 1 u 3 u 2 + 2 u 3 d u = ( ln ( u ) + 3 u 1 u 2 ) = ( ln ( 1 x ) + 3 1 x 1 ( 1 x ) 2 ) I_{3}(x) = - \displaystyle\int \dfrac{1}{u} - 3u^{-2} + 2u^{-3} du = -(\ln(u) + \dfrac{3}{u} - \dfrac{1}{u^2}) = -(\ln(1 - x) + \dfrac{3}{1 - x} - \dfrac{1}{(1 - x)^2})

and,

I 3 = I 3 ( x ) 1 2 1 2 = ln ( 3 ) 4 9 I_{3} = I_{3}(x)|_{-\frac{1}{2}}^{\frac{1}{2}} = \boxed{\ln(3) - \dfrac{4}{9}}

\implies

R 1 : a 1 + a 2 + 3 a 3 = 1 R_{1}: \boxed{a_{1} + a_{2} + 3a_{3} = 1}

R 2 : 9 a 1 3 a 2 a 3 = 3 R_{2}: \boxed{9a_{1} - 3a_{2} - a_{3} = 3}

R 3 : 27 ln ( 3 ) a 1 + 9 ( 4 3 ln ( 3 ) ) a 2 + 3 ( 9 ln ( 3 ) 4 ) a 3 = 28 R_{3}: \boxed{27\ln(3)a_{1} + 9(4 - 3\ln(3))a_{2} + 3(9\ln(3) - 4)a_{3} = 28}

3 R 1 + R 2 3 * R_{1} + R_{2}

( 12 9 ln ( 3 ) ) R 2 + R 3 (12 - 9\ln(3)) * R_{2} + R_{3}

\implies

R 1 : 6 a 1 + 4 a 3 = 3 R^{*}_{1}: 6a_{1} + 4a_{3} = 3

R 2 : ( 108 54 ln ( 3 ) ) a 1 + ( 36 ln ( 3 ) 24 ) a 3 = 64 27 ln ( 3 ) R^{*}_{2}: (108 - 54\ln(3))a_{1} + (36\ln(3) - 24)a_{3} = 64 - 27\ln(3)

( 9 18 ln ( 3 ) ) R 1 + R 2 a 3 = 5 12 ( 3 ln ( 3 ) 4 ) (9 - 18\ln(3)) * R^{*}_{1} + R^{*}_{2} \implies \boxed{a_{3} = \dfrac{5}{12(3\ln(3) - 4)}}

and,

( 6 9 ln ( 3 ) ) R 1 + R 2 a 1 = 27 ln ( 3 ) 41 18 ( 3 ln ( 3 ) 4 ) (6 - 9\ln(3)) * R^{*}_{1} + R^{*}_{2} \implies \boxed{a_{1} = \dfrac{27\ln(3) - 41}{18(3\ln(3) - 4)}}

and substituting a 1 a_{1} and a 3 a_{3} into any of the three initial equations \implies a 2 = 54 ln ( 3 ) 107 18 ( 3 ln ( 3 ) 4 ) \boxed{a_{2} = \dfrac{54\ln(3) - 107}{18(3\ln(3) - 4)}}

a 1 + a 2 + a 3 = 18 ln ( 3 ) 29 6 ( 3 ln ( 3 ) 4 ) = 2 3 2 ln ( 3 ) 29 2 3 ( 3 ln ( 3 ) 2 2 ) = \implies a_{1} + a_{2} + a_{3} = \dfrac{18\ln(3) - 29}{6(3\ln(3) - 4)} = \dfrac{2 * 3^2\ln(3) - 29}{2 * 3(3\ln(3) - 2^2)} = α β 2 ln ( β ) λ α β ( β ln ( β ) α α ) \dfrac{\alpha * \beta^2\ln(\beta) - \lambda}{\alpha * \beta(\beta\ln(\beta) - \alpha^{\alpha})}

α + β + λ = 34 \implies \alpha + \beta + \lambda = \boxed{34} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...