Reverse Engineer Something

Algebra Level 4

If the function f f satisfies the relation f ( x + y ) = f ( x ) f ( y ) f\left( x+y \right) = f\left( x \right) f\left( y \right) for all natural numbers x , y x,y

And if f ( 1 ) = 2 f\left( 1 \right) =2 , and for a natural number a a , the summation below is satisfied.

r = 1 n f ( a + r ) = 16 ( 2 n 1 ) \large \displaystyle \sum _{ r=1 }^{ n }{ f\left( a+r \right) } =16\left( { 2 }^{ n }-1 \right)

What is the value of a a ?

3 6 4 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aditya Jaisingh
Aug 1, 2014

given f(x+y)=f(x)f(y) f(1+1)=f(1)f(1)=2 2=2^2 f(3)=f(1+2)=f(1) f(2)=2 (2^2)=2^3 guessing the pattern f(something)=2^something... f(a+r)=2^(a+r) therefore, opening sigma we get 2^(a+1) + 2^(a+2) + 2^(a+3) +.............+2^(a+n)=2^4(2^n-1) taking 2^a common 2^a(2^1 + 2^2 + 2^3 +2^4 +.......+2^n)=2^4(2^n-1) the terms inside bracket forms GP (2^a) 2(2^n - 1)=2^4(2^n-1) 2^(a+1)*(2^n-1)=2^4(2^n-1) cancelling common term from LHS and RHS 2^(a+1)=2^(4) a+1=4 a=3............got the answer

marvellous

Kandarp Singh - 6 years, 10 months ago

Why 2 a 2 2^a * 2 ?

Carlos David Nexans - 6 years, 10 months ago

Log in to reply

sum of GP = a(r^n-1) where a=first term r=common ratio n=no. of terms here a=2 r=2 n=n hense sum=2(2^n-1) and already 2^a is common so
finally the exp comes out to be (2^a)*2

Aditya Jaisingh - 6 years, 10 months ago
Chew-Seong Cheong
Jan 25, 2015

f ( x + y ) = f ( x ) f ( y ) f ( 1 ) = 2 f ( 2 ) = f ( 1 + 1 ) = 4 f ( 3 ) = f ( 2 + 1 ) = 8 f ( 4 ) = f ( 3 + 1 ) = 16 . . . f ( n ) = 2 n \begin{aligned} f(x+y) & = f(x)f(y) \\ f(1) & = 2 \\ \Rightarrow f(2) & = f(1+1) = 4 \\ \Rightarrow f(3) & = f(2+1) = 8 \\ \Rightarrow f(4) & = f(3+1) = 16 \\ ... f(n) & = 2^n \end{aligned}

Now, we have:

r = 1 n f ( a + r ) = 16 ( 2 n 1 ) = 16 ( 1 + 2 + 4 + . . . + 2 n ) = 16 + 32 + 64 + . . . + 2 3 + n = f ( 4 ) + f ( 5 ) + f ( 6 ) + . . . + f ( 3 + n ) \displaystyle \begin{aligned} \sum _{r=1} ^n {f(a+r)} & = 16(2^n-1) \\ & = 16(1+2+4+...+2^n) \\ & = 16+32+64+...+2^{3+n} \\ & = f(4)+f(5)+f(6)+...+f(\boxed{3}+n) \\ \end{aligned}

a = 3 \Rightarrow a = \boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...