Series Demystified 3

Algebra Level 4

n = 1 48 [ n ! ( n 2 + n 1 ) n n + 1 + n ] \large \sum_{n=1}^{48} \left [ \frac {n!(n^2+n-1)}{n\sqrt{n+1}+\sqrt n}\right]

If the summation above equals to S S , find the value of S + 1 48 ! \frac{S+1}{48!} .

This is one of my original Series Demystified problems .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Isaac Buckley
Jun 18, 2015

S = n = 1 48 [ n ! ( n 2 + n 1 ) n n + 1 + n ] S=\large \sum_{n=1}^{48} \left [ \frac {n!(n^2+n-1)}{n\sqrt{n+1}+\sqrt n}\right]

= n = 1 48 [ n ! ( n 2 + n 1 ) ( n n + 1 n ) ( n n + 1 + n ) ( n n + 1 n ) ] = \large \sum_{n=1}^{48} \left [ \frac {n!(n^2+n-1)(n\sqrt{n+1}-\sqrt n)}{(n\sqrt{n+1}+\sqrt n)(n\sqrt{n+1}-\sqrt n)}\right]

= n = 1 48 [ n ! ( n 2 + n 1 ) ( n n + 1 n ) n ( n 2 + n 1 ) ] = \large \sum_{n=1}^{48} \left [ \frac {n!(n^2+n-1)(n\sqrt{n+1}-\sqrt n)}{n(n^2+n-1)}\right]

= n = 1 48 [ n ! n + 1 ( n 1 ) ! n ] = \large \sum_{n=1}^{48} \left [ n!\sqrt{n+1}-(n-1)!\sqrt{n}\right]

S = 48 ! 49 0 ! 1 = 48 ! × 7 1 S=48!\sqrt{49}-0!\sqrt{1}=48!\times 7 -1

S + 1 48 ! = 7 \implies \frac{S+1}{48!}=\boxed{7}

Nicely done!

Sanjeet Raria - 5 years, 12 months ago

Log in to reply

Thanks :) I enjoyed the question.

Isaac Buckley - 5 years, 12 months ago

Log in to reply

Thanks. I'm glad.

Sanjeet Raria - 5 years, 12 months ago

I thoroughly enjoyed the problem ! !

Swapnil Das - 5 years, 2 months ago

Very nice!!!

I Gede Arya Raditya Parameswara - 4 years, 3 months ago

Let us demystify the expression that is going to be summated.

n ! ( n 2 + n 1 ) n n + 1 + n \dfrac {n!(n^2 + n - 1)}{n\sqrt{n+1} + \sqrt{n}}

n ! ( n 2 + n 1 ) n ( n 2 + n + 1 ) \Rightarrow \dfrac{n!(n^2 + n - 1)}{\sqrt{n}(\sqrt{n^2 + n}+ 1)}

n ! ( n 2 + n 1 ) n \Rightarrow \dfrac{n!(\sqrt{n^2 + n} - 1)}{\sqrt{n}}

n ! ( n + 1 1 n ) \Rightarrow n!(\sqrt{n+1} - \dfrac{1}{\sqrt{n}})

( n + 1 ) ! n + 1 n ! n \Rightarrow \dfrac{(n+1)!}{\sqrt{n+1}} - \dfrac{n!}{\sqrt{n}}

We have it yet again, a telescopic series

S = n = 1 48 ( n + 1 ) ! n + 1 n ! n S=\displaystyle \sum_{n=1}^{48} \dfrac{(n+1)!}{\sqrt{n+1}} - \dfrac{n!}{\sqrt{n}}

S = 49 ! 49 1 ! 1 S=\dfrac{49!}{\sqrt{49}} - \dfrac{1!}{\sqrt{1}}

Required answer is:

S + 1 48 ! = 49 ! 7 48 ! = 7 \dfrac{S+1}{48!} = \dfrac{\frac{49!}{7}}{48!} = 7

Did the same...

Aditya Kumar - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...