Series Demystified 4

Algebra Level 5

n = 1 48 ( n 1 ) ! ( n 3 n 1 ) n n 2 ( n + 1 ) + n ( n + 1 ) 2 \large \sum_{n=1}^{48} \frac {(n-1)!(n^3-n-1)}{n\sqrt{n^2(n+1)}+\sqrt{ n(n+1)^2}}

If the summation above equals to S S , find the value of 48 ! S + 1 \frac{48!}{S+1} .

This is one of my original Series Demystified problems .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Isaac Buckley
Jun 18, 2015

S = n = 1 48 ( n 1 ) ! ( n 3 n 1 ) n n 2 ( n + 1 ) + n ( n + 1 ) 2 S=\large \sum_{n=1}^{48} \frac {(n-1)!(n^3-n-1)}{n\sqrt{n^2(n+1)}+\sqrt{ n(n+1)^2}}

= n = 1 48 ( n 1 ) ! ( n 3 n 1 ) ( n n 2 ( n + 1 ) n ( n + 1 ) 2 ) ( n n 2 ( n + 1 ) + n ( n + 1 ) 2 ) ( n n 2 ( n + 1 ) n ( n + 1 ) 2 ) = \large \sum_{n=1}^{48} \frac {(n-1)!(n^3-n-1)(n\sqrt{n^2(n+1)}-\sqrt{ n(n+1)^2})}{(n\sqrt{n^2(n+1)}+\sqrt{ n(n+1)^2})(n\sqrt{n^2(n+1)}-\sqrt{ n(n+1)^2})}

= n = 1 48 ( n 1 ) ! ( n 3 n 1 ) ( n n 2 ( n + 1 ) n ( n + 1 ) 2 ) n 4 ( n + 1 ) n ( n + 1 ) 2 = \large \sum_{n=1}^{48} \frac {(n-1)!(n^3-n-1)(n\sqrt{n^2(n+1)}-\sqrt{ n(n+1)^2})}{n^4(n+1)-n(n+1)^2}

= n = 1 48 ( n 1 ) ! ( n 3 n 1 ) ( n n 2 ( n + 1 ) n ( n + 1 ) 2 ) n ( n + 1 ) ( n 3 n 1 ) = \large \sum_{n=1}^{48} \frac {(n-1)!(n^3-n-1)(n\sqrt{n^2(n+1)}-\sqrt{ n(n+1)^2})}{n(n+1)(n^3-n-1)}

= n = 1 48 ( n 1 ) ! ( n 2 n + 1 ( n + 1 ) n ) n ( n + 1 ) =\large \sum_{n=1}^{48} \frac {(n-1)!(n^2\sqrt{n+1}-(n+1)\sqrt{ n})}{n(n+1)}

= n = 1 48 n ! n + 1 n + 1 ( n 1 ) ! n n = \large \sum_{n=1}^{48} \frac {n!\sqrt{n+1} }{n+1} -\frac{(n-1)!\sqrt{ n}}{n}

S = 48 ! 49 49 0 ! 1 1 = 48 ! 7 1 S=\frac{48!\sqrt{49}}{49}-\frac{0!\sqrt{1}}{1}=\frac{48!}{7}-1

48 ! S + 1 = 7 \implies \frac{48!}{S+1}=\boxed{7}

Did the same way

Mukul Sharma - 5 years, 11 months ago

Did the exact same

Aditya Kumar - 5 years ago

Let us demystify the expression to be summated

( n 1 ) ! [ n 3 n 1 ] n n 2 ( n + 1 ) + n ( n + 1 ) 2 \dfrac{(n-1)![n^3 - n -1]}{n\sqrt{n^2(n+1)} + \sqrt{n(n+1)^2}}

Taking n ( n + 1 ) \sqrt{n(n+1)} common from the denominator

( n 1 ) ! [ n 3 n 1 ] n ( n + 1 ) [ n n + n + 1 ] \Rightarrow \dfrac{(n-1)![n^3 - n -1]}{\sqrt{n(n+1)}[n\sqrt{n} + \sqrt{n+1}]}

( n 1 ) ! [ n n n + 1 ] n ( n + 1 ) \Rightarrow \dfrac{(n-1)![n\sqrt{n} -\sqrt{n+1}]}{\sqrt{n(n+1)}}

n ( n 1 ) ! n n ( n + 1 ) n + 1 ( n 1 ) ! n ( n + 1 ) \Rightarrow \dfrac{n(n-1)!\sqrt{n}}{\sqrt{n(n+1)}} - \dfrac{\sqrt{n+1}(n-1)!}{\sqrt{n(n+1)}}

n ! n + 1 ( n 1 ) ! n \Rightarrow \dfrac{n!}{\sqrt{n+1}} - \dfrac{(n-1)!}{\sqrt{n}}

This looks to be the n t h n^{th} term of the summation given.

S = n = 1 48 n ! n + 1 ( n 1 ) ! n S = \displaystyle \sum_{n=1}^{48} \dfrac{n!}{\sqrt{n+1}} - \dfrac{(n-1)!}{\sqrt{n}}

S = 1 ! 2 0 ! 1 + 2 ! 3 1 ! 2 + + 48 ! 49 47 ! 48 S = \dfrac{1!}{\sqrt{2}} - \dfrac{0!}{\sqrt{1}} + \dfrac{2!}{\sqrt{3}} - \dfrac{1!}{\sqrt{2}} + \ldots + \dfrac{48!}{\sqrt{49}} - \dfrac{47!}{\sqrt{48}}

S = 48 ! 7 1 S = \dfrac{48!}{7} - 1

Required answer is

48 ! S + 1 = 48 ! 48 ! 7 1 + 1 = 48 ! 48 ! 7 = 7 \dfrac{48!}{S+1} = \dfrac{48!}{\frac{48!}{7} - 1 + 1} = \dfrac{48!}{48!} 7 = \boxed{7}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...