Series Demystified 6

Algebra Level 4

n = 1 48 log ( n n 2 + 3 n + 2 ) \large \sum_{n=1}^{48} \log \left ( \frac {n}{n^2+3n+2} \right )

If the summation above equals to S S , then S + log ( 49 ! ) = log P . S+\log(49!)=-\log P. Find the value of P P .

This is one of my original Series Demystified problems .


The answer is 1225.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

log n n 2 + 3 n + 2 = log n ( n + 1 ) ( n + 2 ) = log ( n ) log ( n + 1 ) log ( n + 2 ) \log\dfrac{n}{n^2 + 3n + 2} = \log\dfrac{n}{(n+1)(n+2)} = \log(n) - \log(n+1) - \log(n+2)

n = 1 48 log ( n ) = log ( 1 ) + log ( 2 ) + + log ( 48 ) = log ( 48 ! ) \displaystyle \sum_{n=1}^{48} \log(n) = \log(1) + \log(2) + \ldots + \log(48) = \log(48!)

n = 1 48 log ( n + 1 ) = log ( 2 ) + log ( 3 ) + + log ( 49 ) = log ( 1 ) + log ( 2 ) + log ( 3 ) + + log ( 49 ) = log ( 49 ! ) \displaystyle \sum_{n=1}^{48} \log(n+1) = \log(2) + \log(3) + \ldots + \log(49) = \log(1) + \log(2) + \log(3) + \ldots + \log(49) = \log(49!)

n = 1 48 log ( n + 2 ) = log ( 3 ) + log ( 4 ) + + log ( 50 ) = log ( 50 ! ) log ( 2 ) log ( 1 ) = log ( 50 ! ) log ( 2 ) \displaystyle \sum_{n=1}^{48} \log(n+2) = \log(3) + \log(4) + \ldots + \log(50) = \log(50!) - \log(2) - \log(1) = \log(50!) - \log(2)

S = log ( 48 ! ) log ( 49 ! ) log ( 50 ! ) + log ( 2 ) S = \log(48!) - \log(49!) - \log(50!) + \log(2)

S + log ( 49 ! ) = log ( 48 ! 50 ! ) + log ( 2 ) S + \log(49!) = \log(\dfrac{48!}{50!}) + \log(2)

S + log ( 49 ! ) = log ( 49.50 ) + log ( 2 ) S + \log(49!) = -\log(49.50) + \log(2)

S + log ( 49 ! ) = log ( 49.50 2 ) S + \log(49!) = -\log(\dfrac{49.50}{2})

P = 49.50 2 = 1225 P = \dfrac{49.50}{2} =1225

Did the same

Aditya Kumar - 5 years, 1 month ago

I really love this set!!!

I Gede Arya Raditya Parameswara - 4 years, 3 months ago

I did almost the same way.

Niranjan Khanderia - 2 years, 11 months ago
Chew-Seong Cheong
Jun 20, 2015

S = n = 1 48 log n ( n 2 + 3 n + 2 ) = n = 1 48 log n ( n + 1 ) ( n + 2 ) = log 48 ! ˙ 2 49 ! 50 ! = log 2 49 ˙ 50 ! = log 2 log 49 log ( 50 ! ) \begin{aligned} S & = \sum_{n=1}^{48} {\log{\frac{n}{(n^2+3n+2)}}} = \sum_{n=1}^{48} {\log{\frac{n}{(n+1)(n+2)}}} \\ & = \log{\frac{48!\dot{} 2}{49!50!}} = \log{\frac{2}{49\dot{} 50!}} = \log{2} - \log{49} - \log{(50!)} \end{aligned}

S + log ( 49 ! ) = log 2 log 49 log ( 50 ! ) + log ( 49 ! ) = log 2 log 49 log 50 log ( 49 ! ) + log ( 49 ! ) = log ( 49 ˙ 25 ) = log 1225 P = 1225 \begin{aligned} S + \log{(49!)} & = \log{2} - \log{49} - \log{(50!)} + \log{(49!)} \\ & = \log{2} - \log{49} - \log{50} - \log{(49!)} + \log{(49!)} \\ & = - \log{(49\dot{}25)} \\ & = - \log{1225} \\ \Rightarrow P & = \boxed{1225} \end{aligned}

Moderator note:

That's a nice way to solve this without dealing with telescoping sum.

Nice solution sir :)

Refaat M. Sayed - 5 years, 11 months ago

Without dealing with telescoping sum. (+1

Niranjan Khanderia - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...