n = 1 ∑ 4 8 lo g ( n 2 + 3 n + 2 n )
If the summation above equals to S , then S + lo g ( 4 9 ! ) = − lo g P . Find the value of P .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Did the same
I really love this set!!!
I did almost the same way.
S = n = 1 ∑ 4 8 lo g ( n 2 + 3 n + 2 ) n = n = 1 ∑ 4 8 lo g ( n + 1 ) ( n + 2 ) n = lo g 4 9 ! 5 0 ! 4 8 ! ˙ 2 = lo g 4 9 ˙ 5 0 ! 2 = lo g 2 − lo g 4 9 − lo g ( 5 0 ! )
S + lo g ( 4 9 ! ) ⇒ P = lo g 2 − lo g 4 9 − lo g ( 5 0 ! ) + lo g ( 4 9 ! ) = lo g 2 − lo g 4 9 − lo g 5 0 − lo g ( 4 9 ! ) + lo g ( 4 9 ! ) = − lo g ( 4 9 ˙ 2 5 ) = − lo g 1 2 2 5 = 1 2 2 5
That's a nice way to solve this without dealing with telescoping sum.
Nice solution sir :)
Without dealing with telescoping sum. (+1
Problem Loading...
Note Loading...
Set Loading...
lo g n 2 + 3 n + 2 n = lo g ( n + 1 ) ( n + 2 ) n = lo g ( n ) − lo g ( n + 1 ) − lo g ( n + 2 )
n = 1 ∑ 4 8 lo g ( n ) = lo g ( 1 ) + lo g ( 2 ) + … + lo g ( 4 8 ) = lo g ( 4 8 ! )
n = 1 ∑ 4 8 lo g ( n + 1 ) = lo g ( 2 ) + lo g ( 3 ) + … + lo g ( 4 9 ) = lo g ( 1 ) + lo g ( 2 ) + lo g ( 3 ) + … + lo g ( 4 9 ) = lo g ( 4 9 ! )
n = 1 ∑ 4 8 lo g ( n + 2 ) = lo g ( 3 ) + lo g ( 4 ) + … + lo g ( 5 0 ) = lo g ( 5 0 ! ) − lo g ( 2 ) − lo g ( 1 ) = lo g ( 5 0 ! ) − lo g ( 2 )
S = lo g ( 4 8 ! ) − lo g ( 4 9 ! ) − lo g ( 5 0 ! ) + lo g ( 2 )
S + lo g ( 4 9 ! ) = lo g ( 5 0 ! 4 8 ! ) + lo g ( 2 )
S + lo g ( 4 9 ! ) = − lo g ( 4 9 . 5 0 ) + lo g ( 2 )
S + lo g ( 4 9 ! ) = − lo g ( 2 4 9 . 5 0 )
P = 2 4 9 . 5 0 = 1 2 2 5