Series Demystified 7

Algebra Level 5

n = 1 48 ( n 3 3 n 1 ) ( n + 1 ) ! \large \sum_{n=1}^{48} \frac {(n^3-3n-1)}{(n+1)!}

If the summation above equals to S S , find the value of ( 49 ! × S ) (49!\times S) .

This is one of my original Series Demystified problems .


The answer is -2400.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Tay Yong Qiang
Aug 18, 2015

n 3 3 n 1 n^3-3n-1

= n 3 n 2 n 2 + 1 =n^3-n-2n-2+1

= n ( n 2 1 ) 2 ( n + 1 ) + 1 =n(n^2-1)-2(n+1)+1

= ( n 1 ) ( n ) ( n + 1 ) 2 ( n + 1 ) + 1 =(n-1)(n)(n+1)-2(n+1)+1

n = 1 48 n 3 3 n 1 ( n + 1 ) ! \displaystyle\sum_{n=1}^{48}\dfrac{n^3-3n-1}{(n+1)!}

= n = 1 48 ( n 1 ) ( n ) ( n + 1 ) 2 ( n + 1 ) + 1 ( n + 1 ) ! =\displaystyle\sum_{n=1}^{48}\frac{(n-1)(n)(n+1)-2(n+1)+1}{(n+1)!}

= n = 1 48 ( 1 ( n 2 ) ! 2 n ! + 1 ( n + 1 ) ! ) =\displaystyle\sum_{n=1}^{48}(\frac{1}{(n-2)!}-\frac{2}{n!}+\frac{1}{(n+1)!})

= n = 1 1 n 3 3 n 1 ( n + 1 ) ! + n = 2 48 ( 1 ( n 2 ) ! 2 n ! + 1 ( n + 1 ) ! ) =\displaystyle\sum_{n=1}^1\frac{n^3-3n-1}{(n+1)!}+\sum_{n=2}^{48}(\frac{1}{(n-2)!}-\frac{2}{n!}+\frac{1}{(n+1)!})

= 3 2 + 1 0 ! + 1 1 ! 1 2 ! 1 47 ! 1 48 ! + 1 49 ! =-\displaystyle\frac{3}{2}+\frac{1}{0!}+\frac{1}{1!}-\frac{1}{2!}-\frac{1}{47!}-\frac{1}{48!}+\frac{1}{49!}

= 48 × 49 49 + 1 49 ! =\dfrac{-48×49-49+1}{49!}

= 2400 49 ! =\dfrac{-2400}{49!}

Thus the answer is 2400 \boxed{-2400} .

John Frank
Aug 24, 2016

S = n = 1 48 n 3 3 n 1 ( n + 1 ) ! = n = 1 48 ( n 3 + n 2 n 1 ) ( n 2 + 2 n ) ( n + 1 ) ! = n = 1 48 ( n 1 ) ( n + 1 ) 2 ( n + 1 ) ! n ( n + 2 ) ( n + 1 ) ! = n = 1 48 ( n 1 ) ( n + 1 ) n ! n ( n + 2 ) ( n + 1 ) ! = ( 1 1 ) ( 1 + 1 ) 1 ! ( 48 ) ( 48 + 2 ) ( 48 + 1 ) ! since this is a telescoping series = 2400 49 ! \begin{aligned} S &= \sum_{n=1}^{48} \frac{n^3-3n-1}{(n+1)!} \\ &= \sum_{n=1}^{48} \frac{(n^3+n^2-n-1)-(n^2+2n)}{(n+1)!} \\ &= \sum_{n=1}^{48} \frac{(n-1)(n+1)^2}{(n+1)!} - \frac{n(n+2)}{(n+1)!} \\ &= \sum_{n=1}^{48} \frac{(n-1)(n+1)}{n!} - \frac{n(n+2)}{(n+1)!} \\ &= \frac{(1-1)(1+1)}{1!} - \frac{(48)(48+2)}{(48+1)!} & \text{since this is a telescoping series} \\ &= -\frac{2400}{49!} \end{aligned}

Hence 49 ! × S = 2400 49! \times S = \boxed{-2400} .

Excellent solution, did the same way, except you could have applied summation at the um... 7th equal to sign step, everything gets cancelled to give 49^2 - 1👍

Utkarsh Dwivedi - 4 years, 9 months ago

Simple solution.+1)

Niranjan Khanderia - 3 years, 4 months ago

n 3 3 n 1 = ( n 1 ) n ( n + 1 ) 2 n ( n + 1 ) + 1. S = n = 1 48 n 3 3 n 1 ( n + 1 ) ! = n = 1 48 ( n 1 ) n ( n + 1 ) 2 n ( n + 1 ) + 1 ( n + 1 ) ! = n = 1 48 { 1 ( n 2 ) ! 2 n ! + 1 ( n + 1 ) ! } . S i s a m i x t e l e s c o p i c s e r i e s . F i r s t t e r m f o r n = 1 i s 1 ( 1 ) ! , b u t n e g a t i v e f a c t o r i a l i s u n d e f i n e d . O r i g i n a l e x p r e s s i o n i s u s e d t o c a l c u l a t e n = 1. n = 2 t o n = 48 i s t h e t e l e s c o p i c s e r i e s . S = n = 1 48 n 3 3 n 1 ( n + 1 ) ! = n = 1 1 n 3 3 n 1 ( n + 1 ) ! + n = 2 48 { 1 ( n 2 ) ! 2 n ! + 1 ( n . + 1 ) ! } = 3 2 + n = 0 46 1 n ! n = 2 48 1 n ! n = 2 48 1 n ! + n = 3 49 1 n ! = 3 2 + 1 0 ! + 1 1 ! 1 47 ! 1 48 ! 1 2 ! + 1 49 ! = 1 47 ! 1 48 ! + 1 49 ! S o ( 49 ! S ) = 49 ! 47 ! 49 ! 48 ! + 49 ! 49 ! = 49 48 49 + 1 = 4 9 2 + 1 = 2400 . n^3-3n-1=(n-1)n(n+1)-2n(n+1)+1.\\ \therefore~\displaystyle S= \sum_{n=1}^{48}\dfrac{n^3-3n-1}{(n+1)!} = \sum_{n=1}^{48} \dfrac{(n-1)n(n+1)-2n(n+1)+1}{(n+1)!} =\sum_{n=1}^{48}\Big\{\dfrac 1 {(n-2)!} - \dfrac 2 {n!}+\dfrac 1 {(n+1)!} \Big \}.\\ S~is~ a~ mix~ telescopic~ series.~First~term~for~n =1~is~\dfrac 1 {(-1)!},~but~~negative~factorial~is~undefined. \\ \therefore~Original~expression~is~used~to~calculate~n=1. ~~~ n=2~to~n=48~is~the~ telescopic~ series.\\ \therefore~\displaystyle S= \sum_{n=1}^{48}\dfrac{n^3-3n-1}{(n+1)!} = \sum_{n=1}^1 \dfrac{n^3-3n-1}{(n+1)!} +\sum_{n=2}^{48}\Big \{\dfrac 1 {(n-2)!} - \dfrac 2 {n!}+\dfrac 1 {(n.+1)!} \Big \}\\ \displaystyle =-\dfrac 3 2+\underline { \sum_{n=0}^{46} \dfrac 1{n!}-\sum_{n=2}^{48} \dfrac 1 {n!}} -\underline{\sum_{n=2}^{48} \dfrac 1 {n!}+\sum_{n=3}^{49} \dfrac 1 {n!}} =-\dfrac 3 2+\underline { \dfrac 1{0!}+\dfrac 1{1!}-\dfrac 1{47!}- \dfrac 1 {48!}} -\underline{ \dfrac 1 {2!}+ \dfrac 1 {49!}} = -\dfrac 1{47!}- \dfrac 1 {48!}+\dfrac 1 {49!}\\ So~(49!*S)=-\dfrac {49!}{47!}- \dfrac {49!} {48!}+\dfrac {49!} {49!}= - 49*48 - 49 + 1=-49^2+1=\Large~~~\color{#D61F06}{-2400}.

Hey there , I know its a bit late but can you tell me what inspired you to do the factorization in the very first step?

Hitesh Yadav - 9 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...