n = 1 ∑ 4 8 ( n + 1 ) ! ( n 3 − 3 n − 1 )
If the summation above equals to S , find the value of ( 4 9 ! × S ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
S = n = 1 ∑ 4 8 ( n + 1 ) ! n 3 − 3 n − 1 = n = 1 ∑ 4 8 ( n + 1 ) ! ( n 3 + n 2 − n − 1 ) − ( n 2 + 2 n ) = n = 1 ∑ 4 8 ( n + 1 ) ! ( n − 1 ) ( n + 1 ) 2 − ( n + 1 ) ! n ( n + 2 ) = n = 1 ∑ 4 8 n ! ( n − 1 ) ( n + 1 ) − ( n + 1 ) ! n ( n + 2 ) = 1 ! ( 1 − 1 ) ( 1 + 1 ) − ( 4 8 + 1 ) ! ( 4 8 ) ( 4 8 + 2 ) = − 4 9 ! 2 4 0 0 since this is a telescoping series
Hence 4 9 ! × S = − 2 4 0 0 .
Excellent solution, did the same way, except you could have applied summation at the um... 7th equal to sign step, everything gets cancelled to give 49^2 - 1👍
Simple solution.+1)
n 3 − 3 n − 1 = ( n − 1 ) n ( n + 1 ) − 2 n ( n + 1 ) + 1 . ∴ S = n = 1 ∑ 4 8 ( n + 1 ) ! n 3 − 3 n − 1 = n = 1 ∑ 4 8 ( n + 1 ) ! ( n − 1 ) n ( n + 1 ) − 2 n ( n + 1 ) + 1 = n = 1 ∑ 4 8 { ( n − 2 ) ! 1 − n ! 2 + ( n + 1 ) ! 1 } . S i s a m i x t e l e s c o p i c s e r i e s . F i r s t t e r m f o r n = 1 i s ( − 1 ) ! 1 , b u t n e g a t i v e f a c t o r i a l i s u n d e f i n e d . ∴ O r i g i n a l e x p r e s s i o n i s u s e d t o c a l c u l a t e n = 1 . n = 2 t o n = 4 8 i s t h e t e l e s c o p i c s e r i e s . ∴ S = n = 1 ∑ 4 8 ( n + 1 ) ! n 3 − 3 n − 1 = n = 1 ∑ 1 ( n + 1 ) ! n 3 − 3 n − 1 + n = 2 ∑ 4 8 { ( n − 2 ) ! 1 − n ! 2 + ( n . + 1 ) ! 1 } = − 2 3 + n = 0 ∑ 4 6 n ! 1 − n = 2 ∑ 4 8 n ! 1 − n = 2 ∑ 4 8 n ! 1 + n = 3 ∑ 4 9 n ! 1 = − 2 3 + 0 ! 1 + 1 ! 1 − 4 7 ! 1 − 4 8 ! 1 − 2 ! 1 + 4 9 ! 1 = − 4 7 ! 1 − 4 8 ! 1 + 4 9 ! 1 S o ( 4 9 ! ∗ S ) = − 4 7 ! 4 9 ! − 4 8 ! 4 9 ! + 4 9 ! 4 9 ! = − 4 9 ∗ 4 8 − 4 9 + 1 = − 4 9 2 + 1 = − 2 4 0 0 .
Hey there , I know its a bit late but can you tell me what inspired you to do the factorization in the very first step?
Problem Loading...
Note Loading...
Set Loading...
n 3 − 3 n − 1
= n 3 − n − 2 n − 2 + 1
= n ( n 2 − 1 ) − 2 ( n + 1 ) + 1
= ( n − 1 ) ( n ) ( n + 1 ) − 2 ( n + 1 ) + 1
n = 1 ∑ 4 8 ( n + 1 ) ! n 3 − 3 n − 1
= n = 1 ∑ 4 8 ( n + 1 ) ! ( n − 1 ) ( n ) ( n + 1 ) − 2 ( n + 1 ) + 1
= n = 1 ∑ 4 8 ( ( n − 2 ) ! 1 − n ! 2 + ( n + 1 ) ! 1 )
= n = 1 ∑ 1 ( n + 1 ) ! n 3 − 3 n − 1 + n = 2 ∑ 4 8 ( ( n − 2 ) ! 1 − n ! 2 + ( n + 1 ) ! 1 )
= − 2 3 + 0 ! 1 + 1 ! 1 − 2 ! 1 − 4 7 ! 1 − 4 8 ! 1 + 4 9 ! 1
= 4 9 ! − 4 8 × 4 9 − 4 9 + 1
= 4 9 ! − 2 4 0 0
Thus the answer is − 2 4 0 0 .