Series Demystified 9

Algebra Level 4

n = 1 48 1 + n + n 2 ( n 2 + n ) ( n + 1 ) ! \large \displaystyle \sum_{n=1}^{48} \dfrac{1+n+n^2}{(n^2 + n)(n+1)!}

If the above summation can be expressed as S S , find 1 49 ! ( S S ) \dfrac{1}{\sqrt{49!\left(\lceil S \rceil - S\right)}} .

Note :

. \lceil . \rceil is the ceiling function.


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let us demystify the expression which is to be summated. ¨ \ddot \smile

1 + n + n 2 ( n 2 + n ) ( n + 1 ) ! = ( 1 + n ) 2 n ( n 2 + n ) ( n + 1 ) ! \dfrac{1+n+n^2}{(n^2+n)(n+1)!} = \dfrac{(1+n)^2 - n}{(n^2+n)(n+1)!}

( 1 + n ) 2 n ( n + 1 ) ( n + 1 ) ! n n ( n + 1 ) ( n + 1 ) ! \Rightarrow \dfrac{(1+n)^2}{n(n+1)(n+1)!} - \dfrac{n}{n(n+1)(n+1)!}

( 1 + n ) n ( n + 1 ) n ! 1 ( n + 1 ) ( n + 1 ) ! \Rightarrow \dfrac{(1+n)}{n(n+1)n!} - \dfrac{1}{(n+1)(n+1)!}

1 n × n ! 1 ( n + 1 ) × ( n + 1 ) ! \Rightarrow \dfrac{1}{n\times n!} - \dfrac{1}{(n+1) \times (n+1)!}

Now we have a telescopic series

S = n = 1 48 1 n × n ! 1 ( n + 1 ) × ( n + 1 ) ! S = \displaystyle \sum_{n=1}^{48} \dfrac{1}{n\times n!} - \dfrac{1}{(n+1) \times (n+1)!}

S = 1 1 × 1 ! 1 2 × 2 ! + 1 2 × 2 ! 1 3 × 3 ! + + 1 48 × 48 ! 1 49 × 49 ! S = \dfrac{1}{1\times 1!} - \dfrac{1}{2\times 2!} + \dfrac{1}{2\times 2!} - \dfrac{1}{3 \times 3!} + \ldots + \dfrac{1}{48\times 48!} - \dfrac{1}{49\times 49!}

S = 1 1 49 × 49 ! S = 1 - \dfrac{1}{49\times 49!}

S = 1 S S = 1 ( 1 1 49 × 49 ! ) = 1 49 × 49 ! \lceil S \rceil = 1 \Rightarrow \lceil S \rceil - S = 1 - \left(1 - \dfrac{1}{49 \times 49!} \right) = \dfrac{1}{49 \times 49!}

Hence the expression we want, which is

1 49 ! ( S S ) = 1 1 49 = 1 1 7 = 7 \dfrac{1}{\sqrt{49!\left(\lceil S \rceil - S \right)}} = \dfrac{1}{\sqrt{\frac{1}{49}}} = \dfrac{1}{\frac{1}{7}} = \boxed{7}

Moderator note:

Nice telescoping observation. How can someone (who is not the problem creator) solve the problem with this approach? Are there any aspects of it which suggests that telescoping would work?

I am one of them dude!!

Aakash Khandelwal - 5 years, 11 months ago

Same way. Fine question

Shreyash Rai - 5 years, 5 months ago
Kenny Lau
Aug 10, 2015

Observe that the denominator is ( n ) ( n + 1 ) ( n + 1 ) ! (n)(n+1)(n+1)! .

Therefore, we propose that:

1 + n + n 2 ( n 2 + n ) ( n + 1 ) ! A n + B n ( n + 1 ) ! + C n + D ( n + 1 ) ( n + 1 ) ! \frac{1+n+n^2}{(n^2+n)(n+1)!} \equiv \frac{An+B}{n(n+1)!} + \frac{Cn+D}{(n+1)(n+1)!}

Multiplying both sides by n ( n + 1 ) ( n + 1 ) ! n(n+1)(n+1)! :

1 + n + n 2 B + ( A + B + D ) n + ( A + C ) n 2 1+n+n^2 \equiv B + (A+B+D)n + (A+C)n^2

Then, comparing like terms give us B = 1 B=1 :

1 + n + n 2 ( n 2 + n ) ( n + 1 ) ! A n + 1 n ( n + 1 ) ! + C n + D ( n + 1 ) ( n + 1 ) ! \frac{1+n+n^2}{(n^2+n)(n+1)!} \equiv \frac{An+1}{n(n+1)!} + \frac{Cn+D}{(n+1)(n+1)!}

In order to create a telescoping series, The first denominator should be n × n ! n\times n! while the second denominator is unchanged. Therefore, let A = 1 A=1 .

Comparing like terms give us C = 0 C=0 and D = 1 D=-1 :

1 + n + n 2 ( n 2 + n ) ( n + 1 ) ! n + 1 n ( n + 1 ) ! 1 ( n + 1 ) ( n + 1 ) ! 1 n × n ! 1 ( n + 1 ) ( n + 1 ) ! \frac{1+n+n^2}{(n^2+n)(n+1)!} \equiv \frac{n+1}{n(n+1)!} - \frac{1}{(n+1)(n+1)!} \equiv \frac{1}{n\times n!} - \frac{1}{(n+1)(n+1)!}

Thus a telescoping series has been created.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...