Series - Problem 1

Algebra Level 4

1 × 1 2 + 2 × 3 2 + 3 × 5 2 + + 50 × 9 9 2 = ? \large 1\times 1^2 + 2\times 3^2 + 3\times 5^2 +\cdots+50\times99^2 = \, ?


The answer is 6332075.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

1 × 1 2 + 2 × 3 2 + 3 × 5 2 + . . . . . . . . . . + 50 × 9 9 2 1\times1^2 +2\times3^2 +3\times5^2 +..........+50\times99^2

= n = 1 50 n ( 2 n 1 ) 2 \displaystyle = \sum_{n=1}^{50} n(2n-1)^2

= n = 1 50 4 n 3 4 n 2 + n \displaystyle = \sum_{n=1}^{50} 4n^3-4n^2+n

= n = 1 50 4 n 3 n = 1 50 4 n 2 + n = 1 50 n \displaystyle = \sum_{n=1}^{50} 4n^3-\sum_{n=1}^{50}4n^2+\sum_{n=1}^{50}n

4 n 3 = 4 × n 2 ( n + 1 ) 2 4 = n 2 ( n + 1 ) 2 \displaystyle \sum 4n^3 = 4 \times \frac{n^2(n+1)^2}{4} =n^2(n+1)^2

4 n 2 = 4 × n ( n + 1 ) ( 2 n + 1 ) 6 = 2 n ( n + 1 ) ( 2 n + 1 ) 3 \displaystyle \sum 4n^2 = 4 \times \frac{n(n+1)(2n+1)}{6} =\frac{2n(n+1)(2n+1)}{3}

n = n ( n + 1 ) 2 \displaystyle \sum n = \frac{n(n+1)}{2}

Now,

n = 1 50 4 n 3 n = 1 50 4 n 2 + n = 1 50 n = 5 0 2 × 5 1 2 2 × 50 × 51 × 101 3 + 50 × 51 2 = 6332075 \displaystyle \sum_{n=1}^{50} 4n^3-\sum_{n=1}^{50}4n^2+\sum_{n=1}^{50}n\\ = 50^2\times 51^2 - \frac{2\times50\times51\times101}{3}+\frac{50\times51}{2}\\ =\boxed{6332075}

I've made some LaTeX changes, specially the \displaystyle .

Please check it, from the edit option in the pencil menu. This might help your further solutions get better latexed.

"\sum_{n=1}^{50} " appears as n = 1 50 \sum_{n=1}^{50}

where as " \displaystyle \sum_{n=1}^{50} " appears as n = 1 50 \displaystyle \sum_{n=1}^{50}

Aditya Raut - 6 years, 8 months ago

did the same! good problem!

Kartik Sharma - 6 years, 8 months ago

Log in to reply

wrote the same!good problem!

Anik Mandal - 6 years, 8 months ago

Exactly Same way

Kushagra Sahni - 5 years, 8 months ago
Rudresh Tomar
Oct 31, 2014

S u m t o t h e n t h t e r m i s g i v e n b y = n ( n + 1 ) ( 6 n 2 2 n 1 ) 6 Sum\quad to\quad the\quad { n }^{ th }\quad term\quad is\quad given\quad by\quad =\quad \frac { n{ (n+1) }({ 6n }^{ 2 }-2n-1) }{ 6 }

Could you clarify this for me? Or prove this? Thanks.

Rishik Jain - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...