Sum of Sum of Squares?

Calculus Level 1

1 + 1 + 2 2 ! + 1 + 2 + 2 2 3 ! + 1 + 2 + 2 2 + 2 3 4 ! + 1 + \frac{1+2}{2!} + \frac{1+2+2^2}{3!} + \frac{1+2+2^2+2^3}{4!} + \ldots

e 2 1 e^2-1 e 2 e^2 e e 2 e^{e^2} e 2 e e^2-e

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Jubayer Nirjhor
Sep 20, 2014

Since 1 + 2 + 2 2 + + 2 n = 2 n + 1 1 , 1+2+2^2+\cdots+2^n=2^{n+1}-1, the given expression changes to k = 1 2 k 1 k ! = ( k = 1 2 k k ! ) ( k = 1 1 k ! ) = e 2 e \sum_{k=1}^\infty \dfrac{2^k-1}{k!}=\left(\sum_{k=1}^\infty \dfrac{2^k}{k!}\right)-\left(\sum_{k=1}^\infty \dfrac{1}{k!}\right)=\boxed{e^2-e} which is the desired value.

Did the same! But can you prove that k = 1 2 k k ! = e 2 1 \sum _{ k=1 }^{ \infty }{ \frac { { 2 }^{ k } }{ k! } } = {e}^{2} - 1 ?

Kartik Sharma - 6 years, 7 months ago

Log in to reply

Via Taylor Series expansion of e x e^x , let x = 2 x = 2 .

Calvin Lin Staff - 6 years, 5 months ago

The correct way to do this! +1

A Former Brilliant Member - 6 years, 8 months ago
Claudio Brot
Jan 2, 2018

An alternative way to do this would be the Taylorseries e x = 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + . . . e^x = 1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+... .

The above expression is equal to 1 + 3 2 ! + 7 3 ! + 15 4 ! + . . . = 1 + 2 2 1 2 ! + 2 3 1 3 ! + 2 4 1 4 ! + . . . 1+\frac{3}{2!}+\frac{7}{3!}+\frac{15}{4!}+... = 1+\frac{2^2-1}{2!}+\frac{2^3-1}{3!}+\frac{2^4-1}{4!}+...

Now we split it up like this: 1 + 2 + 2 2 2 ! + 2 3 3 ! + 2 4 4 ! + . . . ( 1 + 1 + 1 2 2 ! + 1 3 3 ! + 1 4 4 ! + . . . ) = e 2 e 1+2+\frac{2^2}{2!}+\frac{2^3}{3!}+\frac{2^4}{4!}+...-(1+1+\frac{1^2}{2!}+\frac{1^3}{3!}+\frac{1^4}{4!}+...)=\boxed{e^2-e}

Jam M
May 3, 2019

1 + 1 + 2 2 ! + 1 + 2 + 2 2 3 ! + 1 + 2 + 2 2 + 2 3 4 ! + = 1 + 2 2 1 2 ! + 2 3 1 3 ! + 2 4 1 4 ! + = 1 ( 1 2 ! + 1 3 ! + 1 4 ! + ) + ( 2 2 2 ! + 2 3 3 ! + 2 4 4 ! + ) = 1 ( e 2 ) + ( e 2 3 ) = e 2 e 1 + \dfrac{1+2}{2!} + \dfrac{1+2+2^2}{3!} + \dfrac{1+2+2^2+2^3}{4!} + \cdots = \\ 1 + \dfrac{2^2-1}{2!} + \dfrac{2^3-1}{3!} + \dfrac{2^4-1}{4!} + \cdots = \\ 1 - \left( \dfrac{1}{2!} + \dfrac{1}{3!} + \dfrac{1}{4!} + \cdots \right) + \left( \dfrac{2^2}{2!} + \dfrac{2^3}{3!} + \dfrac{2^4}{4!} + \cdots \right) = \\ 1 - (e - 2) + (e^2 - 3) =\\ e^2 - e

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...