1 + 2 ! 1 + 2 + 3 ! 1 + 2 + 2 2 + 4 ! 1 + 2 + 2 2 + 2 3 + …
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Did the same! But can you prove that ∑ k = 1 ∞ k ! 2 k = e 2 − 1 ?
Log in to reply
Via Taylor Series expansion of e x , let x = 2 .
The correct way to do this! +1
An alternative way to do this would be the Taylorseries e x = 1 + x + 2 ! x 2 + 3 ! x 3 + 4 ! x 4 + . . . .
The above expression is equal to 1 + 2 ! 3 + 3 ! 7 + 4 ! 1 5 + . . . = 1 + 2 ! 2 2 − 1 + 3 ! 2 3 − 1 + 4 ! 2 4 − 1 + . . .
Now we split it up like this: 1 + 2 + 2 ! 2 2 + 3 ! 2 3 + 4 ! 2 4 + . . . − ( 1 + 1 + 2 ! 1 2 + 3 ! 1 3 + 4 ! 1 4 + . . . ) = e 2 − e
1 + 2 ! 1 + 2 + 3 ! 1 + 2 + 2 2 + 4 ! 1 + 2 + 2 2 + 2 3 + ⋯ = 1 + 2 ! 2 2 − 1 + 3 ! 2 3 − 1 + 4 ! 2 4 − 1 + ⋯ = 1 − ( 2 ! 1 + 3 ! 1 + 4 ! 1 + ⋯ ) + ( 2 ! 2 2 + 3 ! 2 3 + 4 ! 2 4 + ⋯ ) = 1 − ( e − 2 ) + ( e 2 − 3 ) = e 2 − e
Problem Loading...
Note Loading...
Set Loading...
Since 1 + 2 + 2 2 + ⋯ + 2 n = 2 n + 1 − 1 , the given expression changes to k = 1 ∑ ∞ k ! 2 k − 1 = ( k = 1 ∑ ∞ k ! 2 k ) − ( k = 1 ∑ ∞ k ! 1 ) = e 2 − e which is the desired value.