An algebra problem by Naren Bhandari

Algebra Level 3

10 0 2 9 9 2 + 9 8 2 9 7 2 + 9 6 2 9 5 2 + + 2 2 1 2 = ? 100^2 - 99^2 + 98^2 - 97^2 + 96^2 - 95^2 +\cdots +2^2 - 1^2 = \, ?


The answer is 5050.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Zee Ell
Jan 29, 2017

Consider:

n 2 ( n 1 ) 2 ( n ( n 1 ) ) ( n + ( n 1 ) ) 1 × ( n + ( n 1 ) ) n^2 - (n-1)^2 \equiv (n - (n-1))(n + (n-1)) \equiv 1×(n + (n-1)) \equiv

n + ( n 1 ) \equiv n + (n-1)

Let's apply the identity above for n = 100, 98, 96, ..., 4, 2

We get:

10 0 2 9 9 2 + 9 8 2 9 7 2 + . . . + 4 2 3 2 + 2 2 1 2 = 100^2 - 99^2 + 98^2 - 97^2 + ... + 4^2 - 3^2 + 2^2 - 1^2 =

= 100 + 99 + 98 + 97 + . . . + 4 + 3 + 2 + 1 = 100 × ( 100 + 1 ) 2 = 5050 = 100 + 99 + 98 + 97 + ... + 4 + 3 + 2 + 1 = \frac { 100 × (100 + 1) } {2} = \boxed {5050}

Chew-Seong Cheong
Jan 29, 2017

S = 10 0 2 9 9 2 + 9 8 2 9 7 2 + 9 6 2 9 5 2 + + 2 2 1 2 = ( 100 99 ) ( 100 + 99 ) + ( 98 97 ) ( 98 + 97 ) + ( 96 95 ) ( 96 + 95 ) + + ( 2 1 ) ( 2 + 1 ) = 199 + 195 + 191 + + 3 = 3 k = 1 + 7 2 + 11 3 + + 199 n = 50 General term: 4 k 1 = 50 ( 3 + 199 ) 2 Sum of AP: S = n ( a + l ) 2 = 5050 \begin{aligned} S & = 100^2 - 99^2 + 98^2 - 97^2 + 96^2 - 95^2 + \cdots + 2^2-1^2 \\ & = (100-99)(100+99) + (98-97)(98+97) + (96-95)(96+95) + \cdots + (2-1)(2+1) \\ & = 199 + 195 + 191 + \cdots + 3 \\ & = \underbrace{3}_{k=1} + \underbrace{7}_{2} + \underbrace{11}_{3} + \cdots + \underbrace{199}_{n=50} & \small \color{#3D99F6} \text{General term: } 4k -1 \\ & = \frac {50(3+199)}2 & \small \color{#3D99F6} \text{Sum of AP: } S=\frac {n(a+l)}2 \\ &=\boxed{5050} \end{aligned}

Ow I so stupid.... Found this too but applied sumformula the wrong way...

Peter van der Linden - 4 years, 4 months ago
Fidel Simanjuntak
Jan 31, 2017

This problem seems like one of my problem. You can check it here

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...